StudierendeLehrende

Efficient Markets Hypothesis

Die Efficient Markets Hypothesis (EMH) ist eine Theorie in der Finanzwirtschaft, die besagt, dass die Preise von Wertpapieren an den Finanzmärkten alle verfügbaren Informationen vollständig widerspiegeln. Dies bedeutet, dass es unmöglich ist, durch den Zugriff auf öffentliche Informationen oder durch Analyse von historischen Daten überdurchschnittliche Renditen zu erzielen. Die EMH wird in drei Formen unterteilt:

  1. Schwache Form: Alle historischen Preisinformationen sind bereits in den aktuellen Preisen enthalten.
  2. Halb starke Form: Alle öffentlich verfügbaren Informationen, einschließlich Finanzberichte und Nachrichten, sind in den Preisen reflektiert.
  3. Starke Form: Alle Informationen, sowohl öffentliche als auch private, sind in den Preisen enthalten.

Die Hypothese impliziert, dass Marktteilnehmer rational handeln und dass es keinen systematischen Vorteil gibt, der aus der Analyse von Informationen oder Markttrends gewonnen werden kann. In einem effizienten Markt würde der Preis eines Wertpapiers schnell auf neue Informationen reagieren, was es schwierig macht, Gewinne durch aktives Management zu erzielen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Genregulationsnetzwerk

Ein Gene Regulatory Network (GRN) ist ein komplexes System von Wechselwirkungen zwischen Genen und den Proteinen, die deren Expression steuern. Diese Netzwerke bestehen aus Transkriptionsfaktoren, die an spezifische DNA-Sequenzen binden und somit die Aktivität von Zielgenen regulieren. Die Interaktionen innerhalb eines GRN sind oft nichtlinear und können sowohl positiv (Aktivierung) als auch negativ (Repression) sein, was zu einer Vielzahl von biologischen Reaktionen führt.

Ein GRN spielt eine entscheidende Rolle während der Entwicklung, der Zellidentität und der Reaktion auf Umweltveränderungen. Um die Dynamik eines GRN zu verstehen, verwenden Wissenschaftler häufig mathematische Modelle, die Differentialgleichungen beinhalten, um die zeitliche Veränderung der Genexpression zu beschreiben. Diese Netzwerke sind nicht nur fundamental für das Verständnis der Genregulation, sondern auch für die Entwicklung neuer Therapien in der Medizin, da Dysfunktionen in diesen Netzwerken zu Krankheiten führen können.

Bellman-Gleichung

Die Bellman-Gleichung ist ein zentrales Konzept in der dynamischen Programmierung und der optimalen Steuerung, das die Beziehung zwischen dem Wert eines Zustands und den Werten seiner Nachfolgezustände beschreibt. Sie wird häufig in der Reinforcement Learning- und Entscheidungsfindungstheorie verwendet, um optimale Strategien zu finden. Mathematisch wird die Bellman-Gleichung oft in folgender Form dargestellt:

V(s)=max⁡a(R(s,a)+γ∑s′P(s′∣s,a)V(s′))V(s) = \max_a \left( R(s, a) + \gamma \sum_{s'} P(s' | s, a) V(s') \right)V(s)=amax​(R(s,a)+γs′∑​P(s′∣s,a)V(s′))

Hierbei ist V(s)V(s)V(s) der Wert eines Zustands sss, R(s,a)R(s, a)R(s,a) die sofortige Belohnung für die Aktion aaa im Zustand sss, γ\gammaγ der Diskontierungsfaktor, der zukünftige Belohnungen abwertet, und P(s′∣s,a)P(s' | s, a)P(s′∣s,a) die Übergangswahrscheinlichkeit zu einem neuen Zustand s′s's′ gegeben die aktuelle Aktion aaa. Die Gleichung beschreibt somit, dass der Wert eines Zustands gleich der maximalen Summe aus der Belohnung und dem diskontierten Wert aller möglichen Folgezustände ist. Die Bellman-Gleichung ermöglicht es, optimale Entscheidungsprozesse zu modellieren und zu analysieren, indem sie

PID-Regelung

PID Tuning bezieht sich auf den Prozess der Anpassung der Parameter eines PID-Reglers (Proportional, Integral, Derivative), um eine optimale Regelung eines Systems zu gewährleisten. Die drei Hauptkomponenten des PID-Reglers sind:

  • Proportional (P): Beeinflusst die Regelung basierend auf der aktuellen Abweichung vom Sollwert.
  • Integral (I): Berücksichtigt die Summe der vergangenen Abweichungen, um langfristige Fehler zu eliminieren.
  • Derivative (D): Reagiert auf die Geschwindigkeit der Fehleränderung, um Überschwingungen zu minimieren.

Ein effektives Tuning der PID-Parameter verbessert die Reaktionszeit und Stabilität des Systems. Typische Methoden zur Durchführung des Tuning sind die Ziegler-Nichols-Methode oder die schrittweise Anpassung, bei denen die Parameter schrittweise verändert werden, um die Systemantwort zu beobachten und zu optimieren.

Cobb-Douglas

Die Cobb-Douglas-Produktionsfunktion ist ein zentrales Konzept in der Mikroökonomie, das die Beziehung zwischen Inputfaktoren und dem Output eines Unternehmens beschreibt. Sie wird häufig in der Form Q=A⋅Lα⋅KβQ = A \cdot L^\alpha \cdot K^\betaQ=A⋅Lα⋅Kβ dargestellt, wobei QQQ die produzierte Menge ist, AAA ein technischer Effizienzfaktor, LLL die Menge an Arbeit, KKK die Menge an Kapital, und α\alphaα sowie β\betaβ die Outputelastizitäten von Arbeit und Kapital darstellen.

Diese Funktion zeigt, dass der Output (Q) durch die Kombination von Arbeit (L) und Kapital (K) erzeugt wird, wobei die Werte von α\alphaα und β\betaβ die relativen Beiträge der beiden Inputs zur Gesamtproduktion angeben. Eine interessante Eigenschaft der Cobb-Douglas-Funktion ist ihre homogene Natur, was bedeutet, dass eine proportionale Erhöhung aller Inputfaktoren zu einer proportionalen Erhöhung des Outputs führt. Diese Funktion wird oft verwendet, um Effizienz und Skalenerträge in verschiedenen Produktionsprozessen zu analysieren.

Faktorpreissetzung

Factor Pricing ist ein Konzept aus der Finanzwirtschaft, das sich mit der Bestimmung der Preise von Produktionsfaktoren befasst, wie z. B. Arbeit, Kapital und natürliche Ressourcen. Diese Preise werden oft durch das Zusammenspiel von Angebot und Nachfrage auf den Märkten für diese Faktoren bestimmt. In der klassischen Wirtschaftstheorie wird angenommen, dass die Faktoren durch ihre Grenzproduktivität bewertet werden, was bedeutet, dass der Preis eines Faktors dem zusätzlichen Wert entspricht, den er zur Produktion eines Gutes beiträgt.

Mathematisch lässt sich dies oft durch die Formel für die Grenzproduktivität MP=ΔQΔLMP = \frac{\Delta Q}{\Delta L}MP=ΔLΔQ​ ausdrücken, wobei MPMPMP die Grenzproduktivität, QQQ die produzierte Menge und LLL die Menge des eingesetzten Faktors ist. In der Praxis können verschiedene Faktoren, wie Marktmacht, Regulierungen und Kompensationsstrukturen, die Preisbildung beeinflussen. Factor Pricing spielt eine entscheidende Rolle in der Ressourcenallokation und der Effizienz von Märkten.

Adaptive vs. rationale Erwartungen

Die Konzepte der adaptiven und rationalen Erwartungen beziehen sich auf die Art und Weise, wie Individuen und Märkte zukünftige wirtschaftliche Bedingungen antizipieren. Adaptive Erwartungen basieren auf der Annahme, dass Menschen ihre Erwartungen über zukünftige Ereignisse auf der Grundlage vergangener Erfahrungen und beobachteter Daten anpassen. Dies bedeutet, dass sie tendenziell langsamer auf Veränderungen reagieren und ihre Erwartungen schrittweise anpassen.

Im Gegensatz dazu basieren rationale Erwartungen auf der Überlegung, dass Individuen alle verfügbaren Informationen nutzen, um Erwartungen über die Zukunft zu bilden. Diese Theorie geht davon aus, dass Menschen in der Lage sind, ökonomische Modelle zu verstehen und sich entsprechend anzupassen, was zu schnelleren und genaueren Anpassungen an neue Informationen führt.

In mathematischen Modellen wird häufig angenommen, dass adaptive Erwartungen durch die Gleichung

Et[Yt+1]=Et−1[Yt]+α(Yt−Et−1[Yt])E_t[Y_{t+1}] = E_{t-1}[Y_t] + \alpha (Y_t - E_{t-1}[Y_t])Et​[Yt+1​]=Et−1​[Yt​]+α(Yt​−Et−1​[Yt​])

beschrieben werden, während rationale Erwartungen durch die Gleichung

Et[Yt+1]=E[Yt+1∣It]E_t[Y_{t+1}] = E[Y_{t+1} | \mathcal{I}_t]Et​[Yt+1​]=E[Yt+1​∣It​]

dargestellt werden, wobei It\mathcal{I}_tIt​ den Informationsstand zu Zeitpunkt ttt umfasst.