StudierendeLehrende

Price Floor

Ein Price Floor ist ein staatlich festgelegter Mindestpreis für ein Produkt oder eine Dienstleistung, der nicht unterschritten werden darf. Dieser Mindestpreis wird oft eingeführt, um Produzenten vor extremen Preisschwankungen zu schützen und um sicherzustellen, dass ein gewisses Einkommensniveau für die Anbieter gewährleistet ist. Ein typisches Beispiel für einen Price Floor ist der Mindestlohn, der sicherstellt, dass Arbeitnehmer ein bestimmtes Einkommen erhalten.

Die Auswirkungen eines Price Floors können vielfältig sein:

  • Überangebot: Wenn der festgelegte Preis über dem Gleichgewichtspreis liegt, kann es zu einem Überangebot kommen, da Verkäufer bereit sind, mehr zu produzieren, als Käufer bereit sind zu kaufen.
  • Ressourcenverteilung: Ein Price Floor kann zu einer ineffizienten Verteilung von Ressourcen führen, da überschüssige Waren nicht verkauft werden können.

In der mathematischen Darstellung könnte der Price Floor als PfP_fPf​ definiert werden, wobei gilt: Pf>PeP_f > P_ePf​>Pe​, wobei PeP_ePe​ der Gleichgewichtspreis ist.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Resistive Ram

Resistive Ram (ReRAM oder RRAM) ist eine nicht-flüchtige Speichertechnologie, die auf der Änderung des elektrischen Widerstands eines Materials basiert, um Daten zu speichern. Im Gegensatz zu herkömmlichen Speichertechnologien wie DRAM oder Flash, die auf Ladungsspeicherung beruhen, nutzt ReRAM die Fähigkeit bestimmter Materialien, ihre Leitfähigkeit durch Anwendung eines elektrischen Stroms zu verändern. Diese Veränderungen im Widerstand können in zwei Zustände unterteilt werden: einen hohen Widerstandszustand (HRS) und einen niedrigen Widerstandszustand (LRS).

Die Vorteile von ReRAM umfassen hohe Geschwindigkeit, geringen Energieverbrauch und hohe Dichte, was es zu einem vielversprechenden Kandidaten für zukünftige Speicherlösungen macht. Zusätzlich ermöglicht die Technologie eine potenzielle Integration in neuromorphe Systeme, die auf der Nachahmung von neuronalen Netzwerken basieren, was die Entwicklung von intelligenten Speichersystemen fördert.

Lorentz-Transformation

Die Lorentz-Transformation ist ein fundamentales Konzept der speziellen Relativitätstheorie, das beschreibt, wie die Koordinaten von Raum und Zeit zwischen zwei Bezugssystemen, die sich relativ zueinander mit konstanter Geschwindigkeit bewegen, umgerechnet werden. Sie wurde von dem niederländischen Physiker Hendrik Lorentz formuliert und ist entscheidend für das Verständnis der Relativität von Zeit und Raum. Die Transformation zeigt, dass Zeit und Raum nicht absolut sind, sondern von der Relativgeschwindigkeit der Beobachter abhängen.

Die wichtigsten Formeln der Lorentz-Transformation lauten:

x′=γ(x−vt)x' = \gamma (x - vt)x′=γ(x−vt) t′=γ(t−vxc2)t' = \gamma \left( t - \frac{vx}{c^2} \right)t′=γ(t−c2vx​)

Hierbei sind:

  • x′x'x′ und t′t't′ die Koordinaten im bewegten Bezugssystem,
  • xxx und ttt die Koordinaten im ruhenden Bezugssystem,
  • vvv die Relativgeschwindigkeit zwischen den beiden Systemen,
  • ccc die Lichtgeschwindigkeit,
  • γ=11−v2c2\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}γ=1−c2v2​​1​ der Lorentz-Faktor, der die Effekte der Zeitdilatation und Längenkontraktion quantifiziert.

Diese Transformation zeigt,

Planck-Skalen-Physik-Beschränkungen

Die Planck-Skala ist eine fundamentale Einheit in der Physik, die sich aus den Grundkonstanten der Natur ableitet: der Lichtgeschwindigkeit ccc, der Planckschen Konstante hhh und der Gravitationskonstante GGG. Auf dieser Skala sind die Größenordnungen von Raum und Zeit so gering, dass die klassischen Konzepte der Physik, wie Raum und Zeit, nicht mehr gelten. Stattdessen dominieren quantenmechanische Effekte und die Gravitation spielt eine entscheidende Rolle. Die Planck-Länge lPl_PlP​ ist definiert als:

lP=ℏGc3≈1.616×10−35 ml_P = \sqrt{\frac{\hbar G}{c^3}} \approx 1.616 \times 10^{-35} \text{ m}lP​=c3ℏG​​≈1.616×10−35 m

und die Planck-Zeit tPt_PtP​ als:

tP=ℏGc5≈5.391×10−44 st_P = \sqrt{\frac{\hbar G}{c^5}} \approx 5.391 \times 10^{-44} \text{ s}tP​=c5ℏG​​≈5.391×10−44 s

Die Planck-Skala setzt somit Grenzen für die Gültigkeit klassischer Theorien und erfordert die Entwicklung einer konsistenten Theorie der Quantengravitation, die sowohl die Prinzipien der Quantenmechanik als auch die der allgemeinen Relativitätstheorie integriert. Diese Einschränkungen haben weitreichende Implikationen für die Forschung

Cobb-Douglas

Die Cobb-Douglas-Produktionsfunktion ist ein zentrales Konzept in der Mikroökonomie, das die Beziehung zwischen Inputfaktoren und dem Output eines Unternehmens beschreibt. Sie wird häufig in der Form Q=A⋅Lα⋅KβQ = A \cdot L^\alpha \cdot K^\betaQ=A⋅Lα⋅Kβ dargestellt, wobei QQQ die produzierte Menge ist, AAA ein technischer Effizienzfaktor, LLL die Menge an Arbeit, KKK die Menge an Kapital, und α\alphaα sowie β\betaβ die Outputelastizitäten von Arbeit und Kapital darstellen.

Diese Funktion zeigt, dass der Output (Q) durch die Kombination von Arbeit (L) und Kapital (K) erzeugt wird, wobei die Werte von α\alphaα und β\betaβ die relativen Beiträge der beiden Inputs zur Gesamtproduktion angeben. Eine interessante Eigenschaft der Cobb-Douglas-Funktion ist ihre homogene Natur, was bedeutet, dass eine proportionale Erhöhung aller Inputfaktoren zu einer proportionalen Erhöhung des Outputs führt. Diese Funktion wird oft verwendet, um Effizienz und Skalenerträge in verschiedenen Produktionsprozessen zu analysieren.

Kortex-Oszillationsdynamik

Cortical Oscillation Dynamics bezieht sich auf die rhythmischen Muster elektrischer Aktivität im Gehirn, die durch neuronale Netzwerke erzeugt werden. Diese Oszillationen sind entscheidend für verschiedene kognitive Funktionen, darunter Aufmerksamkeit, Gedächtnis und Wahrnehmung. Sie können in verschiedene Frequenzbänder unterteilt werden, wie z.B. Delta (0.5−4 Hz0.5-4 \, \text{Hz}0.5−4Hz), Theta (4−8 Hz4-8 \, \text{Hz}4−8Hz), Alpha (8−12 Hz8-12 \, \text{Hz}8−12Hz), Beta (12−30 Hz12-30 \, \text{Hz}12−30Hz) und Gamma (30−100 Hz30-100 \, \text{Hz}30−100Hz). Jede dieser Frequenzen spielt eine spezifische Rolle im neuronalen Informationsverarbeitungsprozess. Die Dynamik dieser Oszillationen kann durch verschiedene Faktoren beeinflusst werden, wie z.B. Neurotransmitter, Krankheiten oder Umweltbedingungen, und ihre Untersuchung bietet wertvolle Einblicke in die Funktionsweise des Gehirns und mögliche therapeutische Ansätze.

Piezoelektrischer Aktuator

Ein Piezoelectric Actuator ist ein elektrisches Bauelement, das die piezoelektrischen Eigenschaften bestimmter Materialien nutzt, um mechanische Bewegungen zu erzeugen. Diese Materialien verändern ihre Form oder Größe, wenn sie einer elektrischen Spannung ausgesetzt werden, was als Piezoelektrizität bezeichnet wird. Piezoelectric Actuators sind in der Lage, präzise und schnelle Bewegungen zu erzeugen, was sie ideal für Anwendungen in der Mikropositionierung, in der Medizintechnik und in der Automatisierungstechnik macht.

Die Funktionsweise basiert auf der Beziehung zwischen elektrischer Spannung VVV und der resultierenden Deformation ddd des Materials, die durch die Gleichung d=k⋅Vd = k \cdot Vd=k⋅V beschrieben werden kann, wobei kkk eine Konstante ist, die die Effizienz des Actuators beschreibt. Zu den Vorteilen dieser Aktoren gehören ihre hohe Steifigkeit, sehr schnelle Reaktionszeiten und die Möglichkeit, in einem breiten Frequenzbereich betrieben zu werden.