StudierendeLehrende

Entropy Split

Der Begriff Entropy Split stammt aus der Informationstheorie und wird häufig in der Entscheidungsbaum-Lernalgorithmen verwendet, um die beste Aufteilung von Daten zu bestimmen. Die Entropie ist ein Maß für die Unordnung oder Unsicherheit in einem Datensatz. Bei einer Aufteilung wird die Entropie vor und nach der Aufteilung berechnet, um zu bestimmen, wie gut die Aufteilung die Unsicherheit verringert.

Die Entropie H(S)H(S)H(S) eines Datensatzes SSS wird durch die Formel

H(S)=−∑i=1cpilog⁡2(pi)H(S) = -\sum_{i=1}^{c} p_i \log_2(p_i)H(S)=−i=1∑c​pi​log2​(pi​)

definiert, wobei pip_ipi​ der Anteil der Klasse iii im Datensatz und ccc die Anzahl der Klassen ist. Bei einem Entropy Split wird der Informationsgewinn IGIGIG berechnet, um die Effektivität einer Aufteilung zu bewerten. Der Informationsgewinn wird als Differenz der Entropie vor und nach der Aufteilung berechnet:

IG(S,A)=H(S)−∑v∈Values(A)∣Sv∣∣S∣H(Sv)IG(S, A) = H(S) - \sum_{v \in \text{Values}(A)} \frac{|S_v|}{|S|} H(S_v)IG(S,A)=H(S)−v∈Values(A)∑​∣S∣∣Sv​∣​H(Sv​)

Hierbei ist AAA die Attribut, nach dem aufgeteilt wird, und SvS_vSv​ ist die Teilmenge von $

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

AVL-Baum-Rotationen

Ein AVL-Baum ist eine selbstbalancierende binäre Suchbaumstruktur, die sicherstellt, dass die Höhenbalance zwischen linken und rechten Unterbäumen für jeden Knoten im Baum eingehalten wird. Wenn diese Balance durch Einfügen oder Löschen von Knoten verletzt wird, sind Rotationen notwendig, um die Struktur wieder ins Gleichgewicht zu bringen. Es gibt vier Hauptarten von Rotationen:

  1. Rechtsrotation: Wird verwendet, wenn ein Knoten im linken Teilbaum eines Knotens eingefügt wird, was zu einer Überbalance führt.
  2. Linksrotation: Tritt auf, wenn ein Knoten im rechten Teilbaum eines Knotens eingefügt wird, was ebenfalls zu einer Überbalance führt.
  3. Links-Rechts-Rotation: Eine Kombination von Links- und Rechtsrotationen, die erforderlich ist, wenn ein Knoten im rechten Teilbaum des linken Kindknotens eingefügt wird.
  4. Rechts-Links-Rotation: Eine Kombination von Rechts- und Linksrotationen, die verwendet wird, wenn ein Knoten im linken Teilbaum des rechten Kindknotens eingefügt wird.

Durch diese Rotationen wird die Höhe des Baumes minimiert, was die Effizienz von Such-, Einfüge- und Löschoperationen verbessert und eine Zeitkomplexität von O(log⁡n)O(\log n)O(logn) gewährleistet.

Shapley-Wert

Der Shapley Value ist ein Konzept aus der kooperativen Spieltheorie, das zur Verteilung von Gewinnen oder Verlusten unter den Mitgliedern einer Koalition verwendet wird. Er wurde von Lloyd Shapley entwickelt und basiert auf der Idee, dass jeder Spieler einen bestimmten Beitrag zum Gesamtergebnis leistet. Der Shapley Value berücksichtigt nicht nur den individuellen Beitrag eines Spielers, sondern auch, wie dieser Beitrag in verschiedenen Koalitionen zum Tragen kommt.

Mathematisch wird der Shapley Value für einen Spieler iii in einer Koalition durch die Formel

ϕi(v)=∑S⊆N∖{i}∣S∣!⋅(∣N∣−∣S∣−1)!∣N∣!⋅(v(S∪{i})−v(S))\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! \cdot (|N| - |S| - 1)!}{|N|!} \cdot (v(S \cup \{i\}) - v(S))ϕi​(v)=S⊆N∖{i}∑​∣N∣!∣S∣!⋅(∣N∣−∣S∣−1)!​⋅(v(S∪{i})−v(S))

definiert, wobei NNN die Menge aller Spieler ist und v(S)v(S)v(S) den Wert der Koalition SSS darstellt. Der Shapley Value hat zahlreiche Anwendungen in verschiedenen Bereichen, wie z.B. der Wirtschaft, der Politik und der Verteilung von Ressourcen, da er faire und rationale Entscheidungsfindungen fördert.

Granger-Kausalität ökonometrische Tests

Die Granger-Kausalität ist ein statistisches Konzept, das untersucht, ob eine Zeitreihe (z. B. XtX_tXt​) dazu beitragen kann, die zukünftigen Werte einer anderen Zeitreihe (z. B. YtY_tYt​) vorherzusagen. Es ist wichtig zu beachten, dass Granger-Kausalität nicht notwendigerweise eine echte Kausalität impliziert, sondern lediglich eine Vorhersehbarkeit darstellt. Der Test basiert auf der Annahme, dass die Vergangenheit von XXX Informationen enthält, die zur Vorhersage von YYY nützlich sind. Um den Test durchzuführen, werden typischerweise autoregressive Modelle verwendet, in denen die gegenwärtigen Werte einer Zeitreihe als Funktion ihrer eigenen vorherigen Werte und der vorherigen Werte einer anderen Zeitreihe modelliert werden.

Der Granger-Test wird häufig in der Ökonometrie eingesetzt, um Beziehungen zwischen wirtschaftlichen Indikatoren zu analysieren, z. B. zwischen Zinsen und Inflation oder zwischen Angebot und Nachfrage. Ein wesentlicher Aspekt des Tests ist die Überprüfung der Hypothese, dass die Parameter der Verzögerungen von XXX in der Gleichung für YYY gleich null sind. Wenn diese Hypothese abgelehnt wird, sagt man, dass XXX Granger-ursächlich für YYY

Regulierung von Genexpressionsrauschen

Die Regulation von Genexpressionsrauschen bezieht sich auf die Mechanismen, die sicherstellen, dass die Variabilität in der Genexpression innerhalb einer Zelle kontrolliert wird. Genexpressionsrauschen beschreibt die zufälligen Schwankungen in der Menge an mRNA oder Protein, die von einem bestimmten Gen produziert wird, selbst unter identischen Bedingungen. Diese Schwankungen können zu unterschiedlichen phänotypischen Ausdrücken führen, was für die Zellfunktion und die Reaktion auf Umweltbedingungen entscheidend ist. Um die negativen Auswirkungen von Rauschen zu minimieren, nutzen Zellen verschiedene Strategien, wie z.B. Feedback-Schleifen, Kopplung von Genen oder die Verwendung von Regulatorproteinen, die die Stabilität der mRNA und die Effizienz der Translation beeinflussen. Eine gut regulierte Genexpression ist für die Homöostase der Zelle und die Anpassungsfähigkeit an Veränderungen in der Umgebung unerlässlich.

Liouville-Satz

Das Liouville-Theorem ist ein zentrales Ergebnis in der Theorie der dynamischen Systeme und der Hamiltonschen Mechanik. Es besagt, dass die Dichte von Punkten in einem Phasenraum, der durch ein Hamiltonsches System definiert ist, unter der Zeitentwicklung konstant bleibt. Mathematisch formuliert wird dies häufig durch die Gleichung

ddtρ(x(t),p(t))+∇⋅(ρ(x(t),p(t)) v)=0\frac{d}{dt} \rho(x(t), p(t)) + \nabla \cdot (\rho(x(t), p(t)) \, \mathbf{v}) = 0dtd​ρ(x(t),p(t))+∇⋅(ρ(x(t),p(t))v)=0

beschrieben, wobei ρ\rhoρ die Dichte der Phasenraumpunkte und v\mathbf{v}v die Geschwindigkeit des Systems ist. Dies bedeutet, dass Volumina im Phasenraum, die durch die Bewegung von Teilchen erzeugt werden, nicht zusammenfallen oder auseinanderlaufen; sie bleiben also konstant. Ein wichtiger Schlussfolgerung des Liouville-Theorems ist, dass die Energie und die Gesamtzahl der Teilchen in einem abgeschlossenen System erhalten bleiben, was fundamentale Implikationen für die Erhaltungssätze in der Physik hat.

Topologische Isolatormaterialien

Topologische Isolatoren sind eine spezielle Klasse von Materialien, die elektrische Leitfähigkeit an ihren Oberflächen, jedoch nicht im Inneren aufweisen. Diese Materialien zeichnen sich durch ihre topologische Eigenschaften aus, die durch die Symmetrie ihrer quantenmechanischen Zustände bestimmt werden. In einem topologischen Isolator sind die Randzustände robust gegenüber Störungen, was bedeutet, dass sie auch in Anwesenheit von Unreinheiten oder Defekten stabil bleiben.

Die einzigartigen Eigenschaften dieser Materialien ergeben sich aus der Wechselwirkung zwischen Elektronen und der Struktur des Materials, oft beschrieben durch die Topologie der Bandstruktur. Ein bekanntes Beispiel für einen topologischen Isolator ist Bismut-Antimon (Bi-Sb), das in der Forschung häufig untersucht wird. Solche Materialien haben das Potenzial, in der Quantencomputing-Technologie und in der Spintronik verwendet zu werden, da sie neue Wege zur Manipulation von Informationen bieten.