StudierendeLehrende

Epigenome-Wide Association Studies

Epigenome-Wide Association Studies (EWAS) sind Untersuchungen, die darauf abzielen, Zusammenhänge zwischen epigenetischen Veränderungen und bestimmten phänotypischen Merkmalen oder Krankheiten zu identifizieren. Im Gegensatz zu herkömmlichen genomweiten Assoziationsstudien, die sich auf genetische Varianten konzentrieren, analysieren EWAS die epigenetischen Modifikationen wie DNA-Methylierung und Histonmodifikationen, die die Genexpression beeinflussen können, ohne die zugrunde liegende DNA-Sequenz zu verändern. Diese Studien können wichtige Einblicke in die Umweltfaktoren geben, die zur Entwicklung von Krankheiten beitragen, da epigenetische Veränderungen oft durch äußere Einflüsse wie Ernährung, Stress oder Toxine ausgelöst werden.

Ein typisches Vorgehen in EWAS umfasst die folgenden Schritte:

  1. Probenentnahme: Sammlung von Gewebeproben von Individuen mit und ohne die untersuchte Erkrankung.
  2. Epigenetische Analyse: Untersuchung der DNA-Methylierungsmuster mittels Techniken wie der Bisulfit-Sequenzierung oder Methylierungsarrays.
  3. Statistische Auswertung: Identifikation von Differenzen in den Methylierungsmustern zwischen den beiden Gruppen, oft unter Verwendung von multivariaten statistischen Modellen.
  4. Validierung: Bestätigung

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Vgg16

VGG16 ist ein tiefes Convolutional Neural Network (CNN), das für die Bildklassifikation entwickelt wurde und 2014 von der Visual Geometry Group der Universität Oxford vorgestellt wurde. Es besteht aus 16 Gewichtsschichten, darunter 13 Convolutional-Schichten und 3 Fully Connected-Schichten. VGG16 zeichnet sich durch seine einheitliche Architektur aus, bei der nur 3x3 Convolutional-Kernel (Filter) verwendet werden, um eine hohe räumliche Auflösung zu erhalten, während die Anzahl der Filter mit der Tiefe des Netzwerks zunimmt. Diese Struktur ermöglicht es, komplexe Merkmale in den Bildern zu erfassen, was zu einer hohen Genauigkeit bei der Bildklassifikation führt. VGG16 wird häufig als Vortrainierungsmodell verwendet und kann durch Transfer Learning an spezifische Aufgaben angepasst werden, was es zu einem beliebten Werkzeug in der Computer Vision macht.

Dynamische Programmierung

Dynamic Programming ist eine leistungsstarke Technik zur Lösung komplexer Probleme, die sich in überlappende Teilprobleme zerlegen lassen. Es basiert auf zwei Hauptprinzipien: Optimalitätsprinzip und Überlappende Teilprobleme. Bei der Anwendung von Dynamic Programming werden die Ergebnisse der Teilprobleme gespeichert, um die Anzahl der Berechnungen zu reduzieren, was zu einer signifikanten Verbesserung der Effizienz führt.

Ein klassisches Beispiel ist das Fibonacci-Zahlen-Problem, bei dem die nnn-te Fibonacci-Zahl durch die Summe der beiden vorherigen Zahlen definiert ist:

F(n)=F(n−1)+F(n−2)F(n) = F(n-1) + F(n-2)F(n)=F(n−1)+F(n−2)

Anstatt die Werte immer wieder neu zu berechnen, speichert man die bereits berechneten Werte in einem Array oder einer Tabelle, wodurch die Zeitkomplexität von exponentiell auf linear reduziert wird. Dynamic Programming findet Anwendung in vielen Bereichen, wie z.B. der Optimierung, der Graphentheorie und der Wirtschaft, insbesondere bei Entscheidungsproblemen und Ressourcenallokation.

Festkörper-Lithium-Schwefel-Batterien

Solid-State Lithium-Sulfur Batterien sind eine vielversprechende Technologie für die Energiespeicherung, die sich durch eine hohe Energiedichte und Sicherheit auszeichnet. Im Gegensatz zu herkömmlichen Lithium-Ionen-Batterien verwenden diese Batterien einen festen Elektrolyten anstelle einer flüssigen Elektrolytlösung, was das Risiko von Leckagen und Bränden verringert. Die Energiedichte von Lithium-Sulfur Batterien kann theoretisch bis zu 500 Wh/kg erreichen, was sie potenziell leistungsfähiger macht als aktuelle Batterietypen.

Ein weiteres wichtiges Merkmal ist die Verwendung von Schwefel als Kathodenmaterial, das nicht nur kostengünstig, sondern auch umweltfreundlich ist. Allerdings stehen Forscher vor Herausforderungen wie der geringen elektrischen Leitfähigkeit von Schwefel und der Neigung zur Volumenänderung während des Lade- und Entladevorgangs, was die Lebensdauer der Batterie beeinträchtigen kann. Dank fortschrittlicher Materialien und Technologien wird jedoch intensiv an der Überwindung dieser Hürden gearbeitet, um die Markteinführung dieser innovativen Batterietechnologie zu beschleunigen.

Photonische Kristallgestaltung

Das Design von photonischen Kristallen bezieht sich auf die gezielte Gestaltung von Materialien, die eine regelmäßige Struktur aufweisen und die Wechselwirkung von Licht mit Materie steuern können. Diese Kristalle haben eine periodische Anordnung von Materialien mit unterschiedlichen Brechungsindices, was zu einem Phänomen führt, das als Bandlücken bekannt ist. In diesen Bandlücken kann Licht bestimmter Frequenzen nicht propagieren, wodurch photonische Kristalle als Filter oder Wellenleiter fungieren.

Ein typisches Beispiel sind photonic crystal fibers, die durch ihr Design eine hochgradige Kontrolle über die Lichtausbreitung bieten. Die mathematische Beschreibung solcher Strukturen erfolgt oft durch die Lösung der Maxwell-Gleichungen, wobei die Strukturparameter wie Periodizität und Brechungsindex entscheidend sind. Die Anwendungsmöglichkeiten reichen von optischen Komponenten in der Telekommunikation bis hin zu Sensoren und Quantencomputing.

Fama-French-Modell

Das Fama-French-Modell ist ein weit verbreitetes Asset-Pricing-Modell, das 1993 von den Finanzökonomen Eugene Fama und Kenneth French entwickelt wurde. Es erweitert das traditionelle Capital Asset Pricing Model (CAPM), indem es neben dem Marktrisiko auch zwei weitere Faktoren berücksichtigt: die Größe (Size) und die Wachstumsrate (Value) von Unternehmen.

Das Modell postuliert, dass Aktien von kleinen Unternehmen (Small Caps) tendenziell höhere Renditen erzielen als Aktien von großen Unternehmen (Large Caps), und dass Aktien mit niedrigem Kurs-Gewinn-Verhältnis (Value Stocks) bessere Renditen liefern als solche mit hohem Kurs-Gewinn-Verhältnis (Growth Stocks). Mathematisch lässt sich das Fama-French-Modell wie folgt darstellen:

Ri=Rf+βi(Rm−Rf)+s⋅SMB+h⋅HMLR_i = R_f + \beta_i (R_m - R_f) + s \cdot SMB + h \cdot HMLRi​=Rf​+βi​(Rm​−Rf​)+s⋅SMB+h⋅HML

Hierbei steht RiR_iRi​ für die erwartete Rendite eines Wertpapiers, RfR_fRf​ für den risikofreien Zinssatz, RmR_mRm​ für die Marktrendite, SMBSMBSMB (Small Minus Big) für die Renditedifferenz zwischen kleinen und großen Unternehmen und HMLHMLHML (High Minus Low) für die Renditedifferenz zwischen wertvollen und

Beta-Funktion-Integral

Das Beta-Funktion-Integral ist eine wichtige mathematische Funktion, die in der Analysis, Wahrscheinlichkeitstheorie und Statistik weit verbreitet ist. Die Beta-Funktion, definiert als

B(x,y)=∫01tx−1(1−t)y−1 dtB(x, y) = \int_0^1 t^{x-1} (1-t)^{y-1} \, dtB(x,y)=∫01​tx−1(1−t)y−1dt

für x>0x > 0x>0 und y>0y > 0y>0, beschreibt das Verhalten von Integralen, die Produkte von Potenzen enthalten. Die Funktion kann auch in Bezug zur Gamma-Funktion ausgedrückt werden, wobei gilt:

B(x,y)=Γ(x)Γ(y)Γ(x+y)B(x, y) = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}B(x,y)=Γ(x+y)Γ(x)Γ(y)​

Die Beta-Funktion findet Anwendung in verschiedenen Bereichen, wie etwa der Statistik zur Beschreibung von Beta-Verteilungen, und spielt eine entscheidende Rolle in der Integralrechnung. Eine besondere Eigenschaft ist die Symmetrie, die besagt, dass B(x,y)=B(y,x)B(x, y) = B(y, x)B(x,y)=B(y,x). Diese Funktion hilft oft bei der Berechnung von Wahrscheinlichkeiten und der Analyse von Verteilungen.