StudierendeLehrende

Phillips Curve Expectations

Die Phillips-Kurve beschreibt die inverse Beziehung zwischen Inflation und Arbeitslosigkeit in einer Volkswirtschaft. Mit der Einführung von Erwartungen in dieses Modell hat sich das Verständnis der Phillips-Kurve verändert. Phillips Curve Expectations beziehen sich darauf, wie die Erwartungen der Menschen bezüglich zukünftiger Inflation die tatsächlichen wirtschaftlichen Bedingungen beeinflussen können. Wenn die Menschen beispielsweise eine hohe Inflation erwarten, werden sie möglicherweise höhere Löhne fordern, was zu einer steigenden Inflation führt.

Mathematisch kann die Beziehung durch die Gleichung dargestellt werden:

πt=πte−β(ut−un)\pi_t = \pi^e_t - \beta (u_t - u_n)πt​=πte​−β(ut​−un​)

Hierbei ist πt\pi_tπt​ die tatsächliche Inflation, πte\pi^e_tπte​ die erwartete Inflation, utu_tut​ die tatsächliche Arbeitslosigkeit und unu_nun​ die natürliche Arbeitslosigkeit. Diese Erweiterung der Phillips-Kurve zeigt, dass die Erwartungen der Wirtschaftsteilnehmer eine entscheidende Rolle spielen, da sie die kurzfristige Stabilität zwischen Inflation und Arbeitslosigkeit beeinflussen können.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Meg Inverse Problem

Das Meg Inverse Problem bezieht sich auf die Herausforderung, die zugrunde liegenden Quellen von Magnetfeldmessungen zu rekonstruieren, die durch magnetoenzephalographische (MEG) oder magnetische Resonanz bildgebende Verfahren (MRI) erfasst wurden. Bei diesem Problem wird versucht, die elektrischen Aktivitäten im Gehirn, die für die gemessenen Magnetfelder verantwortlich sind, zu identifizieren. Dies ist besonders schwierig, da die Beziehung zwischen den Quellen und den gemessenen Feldern nicht eindeutig ist und oft mehrere mögliche Quellkonfigurationen existieren können, die dasselbe Magnetfeld erzeugen.

Die mathematische Formulierung des Problems kann durch die Gleichung B=A⋅SB = A \cdot SB=A⋅S beschrieben werden, wobei BBB die gemessenen Magnetfelder, AAA die Sensitivitätsmatrix und SSS die Quellstärken repräsentiert. Um das Problem zu lösen, sind verschiedene Methoden wie Regularisierung und optimale Schätzung erforderlich, um die Lösungen zu stabilisieren und die Auswirkungen von Rauschen zu minimieren. Diese Techniken sind entscheidend, um die Genauigkeit und Zuverlässigkeit der rekonstruierten Quellaktivitäten zu gewährleisten.

bürstenloser Motor

Ein Brushless Motor ist eine Art elektrischer Motor, der ohne Bürsten arbeitet, was ihn effizienter und langlebiger macht als herkömmliche Motoren mit Bürsten. Diese Motoren verwenden stattdessen elektronische Steuerungen, um die Magnetfelder im Motor zu erzeugen und die Drehbewegung zu erzeugen. Das Fehlen von Bürsten reduziert den Verschleiß und die Wartung, da es keine mechanischen Teile gibt, die sich abnutzen können.

Die Funktionsweise basiert auf der Wechselwirkung zwischen Permanentmagneten und elektrischen Spulen, die in einem bestimmten Muster angesteuert werden. Dadurch wird eine gleichmäßige und präzise Drehmomentabgabe erreicht. Brushless Motoren finden breite Anwendung in Bereichen wie der Luftfahrt, Automobilindustrie und Robotik, wo Leistung und Effizienz von entscheidender Bedeutung sind.

Stokesscher Satz

Das Stokes Theorem ist ein fundamentales Resultat der Vektoranalysis, das eine Beziehung zwischen der Integration eines Vektorfeldes über eine Fläche und der Integration seiner Rotation entlang des Randes dieser Fläche herstellt. Es besagt, dass die Fläche SSS und ihr Rand ∂S\partial S∂S in einem dreidimensionalen Raum miteinander verbunden sind. Mathematisch formuliert lautet das Theorem:

∫∂SF⋅dr=∫S(∇×F)⋅dS\int_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \int_{S} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}∫∂S​F⋅dr=∫S​(∇×F)⋅dS

Hierbei ist F\mathbf{F}F ein Vektorfeld, drd\mathbf{r}dr ein infinitesimales Linien-Element entlang des Randes und dSd\mathbf{S}dS ein infinitesimales Flächen-Element, das die Orientierung der Fläche SSS beschreibt. Das Theorem hat weitreichende Anwendungen in der Physik und Ingenieurwissenschaft, insbesondere in der Elektrodynamik und Fluiddynamik, da es es ermöglicht, komplexe Berechnungen zu vereinfachen, indem man statt über Flächen über deren Ränder integriert.

Hotellings Regel nicht erneuerbare Ressourcen

Hotelling's Regel beschreibt, wie der Preis von nicht erneuerbaren Ressourcen, wie Öl oder Erdgas, im Laufe der Zeit steigen sollte, um den Wert dieser Ressourcen zu maximieren. Die Grundannahme ist, dass der Preis einer nicht erneuerbaren Ressource im Zeitverlauf mit dem Zinssatz des Kapitals wachsen sollte, was bedeutet, dass der zukünftige Preis der Ressource höher ist als der aktuelle Preis. Dies führt zu der Erkenntnis, dass die Ausbeutung der Ressource über die Zeit hinweg so gesteuert werden sollte, dass die Knappheit der Ressource ihre zukünftige Verfügbarkeit und den damit verbundenen Preis berücksichtigt.

Die Regel lässt sich mathematisch ausdrücken: Wenn P(t)P(t)P(t) der Preis der Ressource zu einem Zeitpunkt ttt ist, sollte gelten:

dP(t)dt=r⋅P(t)\frac{dP(t)}{dt} = r \cdot P(t)dtdP(t)​=r⋅P(t)

wobei rrr der Zinssatz ist. Diese Dynamik hat wichtige Implikationen für die Planung und das Management von Ressourcen, da sie die Notwendigkeit betont, die Ausbeutung nicht erneuerbarer Ressourcen nachhaltig zu gestalten, um langfristig wirtschaftliche Vorteile zu sichern.

Quantentiefenlaser-Effizienz

Die Effizienz von Quantum Well Lasern (QWL) bezieht sich auf die Fähigkeit dieser Laser, elektrische Energie in optische Energie umzuwandeln. Quantum Well Laser nutzen eine spezielle Struktur, die aus dünnen Schichten von Halbleitermaterialien besteht, um die Rekombination von Elektronen und Löchern zu ermöglichen. Durch die quanteneffekte in diesen Schichten wird die Wahrscheinlichkeit einer rekombinierenden Übergangs erhöht, was zu einer höheren Lichtemission führt. Die Effizienz kann durch verschiedene Faktoren beeinflusst werden, darunter die Temperatur, die Materialqualität und die Betriebsbedingungen.

Ein wichtiges Maß für die Effizienz ist der quantum efficiency, der definiert ist als das Verhältnis der emittierten Photonen zu den rekombinierten Elektronen. Mathematisch kann dies als:

η=NphNe\eta = \frac{N_{ph}}{N_{e}}η=Ne​Nph​​

ausgedrückt werden, wobei NphN_{ph}Nph​ die Anzahl der emittierten Photonen und NeN_{e}Ne​ die Anzahl der rekombinierten Elektronen ist. Eine höhere Effizienz bedeutet nicht nur eine bessere Leistung des Lasers, sondern auch eine geringere Wärmeentwicklung, was für viele Anwendungen von entscheidender Bedeutung ist.

Marshallian Nachfrage

Die Marshallian Demand beschreibt die Menge eines Gutes, die ein Konsument nachfragt, um seinen Nutzen zu maximieren, gegeben ein bestimmtes Einkommen und die Preise der Güter. Diese Nachfragefunktion basiert auf der Annahme, dass Konsumenten rational handeln und ihre Ressourcen effizient einsetzen. Der Prozess zur Bestimmung der Marshallian Demand umfasst die Lösung des Optimierungsproblems, bei dem der Nutzen maximiert und die Budgetbeschränkung berücksichtigt wird. Mathematisch lässt sich die Marshallian Demand für ein Gut xxx durch die Gleichung darstellen:

x(p,I)=argmaxx(U(x))unter der Bedingungp⋅x≤Ix(p, I) = \text{argmax}_{x} \left( U(x) \right) \quad \text{unter der Bedingung} \quad p \cdot x \leq Ix(p,I)=argmaxx​(U(x))unter der Bedingungp⋅x≤I

Hierbei steht ppp für den Preis des Gutes, III für das Einkommen und U(x)U(x)U(x) für die Nutzenfunktion des Konsumenten. Die Marshallian Demand ist somit eine zentrale Komponente der Mikroökonomie, da sie zeigt, wie Preisänderungen und Einkommensveränderungen das Konsumverhalten beeinflussen können.