Die Euler’sche Formel ist eine fundamentale Beziehung in der Mathematik, die die Verbindung zwischen der Analysis und der trigonometrischen Funktion beschreibt. Sie lautet:
Hierbei ist die Basis des natürlichen Logarithmus, die imaginäre Einheit und eine reelle Zahl. Diese Formel zeigt, dass komplexe Exponentialfunktionen eng mit trigonometrischen Funktionen verknüpft sind. Besonders bemerkenswert ist, dass sie es ermöglicht, komplexe Zahlen in der Form darzustellen, wobei der Betrag und das Argument der komplexen Zahl ist. Die Anwendung von Euler’s Formel findet sich in vielen Bereichen der Mathematik, einschließlich der Signalverarbeitung, der Quantenmechanik und der Schwingungsanalyse, und sie ist ein Schlüssel zu einem tieferen Verständnis der komplexen Zahlen.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.