StudierendeLehrende

Euler’S Totient

Die Euler'sche Totient-Funktion, oft mit ϕ(n)\phi(n)ϕ(n) bezeichnet, ist eine mathematische Funktion, die die Anzahl der positiven ganzen Zahlen zählt, die zu einer gegebenen Zahl nnn teilerfremd sind. Zwei Zahlen sind teilerfremd, wenn ihr größter gemeinsamer Teiler (ggT) gleich 1 ist. Zum Beispiel ist ϕ(9)=6\phi(9) = 6ϕ(9)=6, da die Zahlen 1, 2, 4, 5, 7 und 8 teilerfremd zu 9 sind.

Die Totient-Funktion kann auch für Primzahlen ppp berechnet werden, wobei gilt:

ϕ(p)=p−1\phi(p) = p - 1ϕ(p)=p−1

Für eine Zahl nnn, die in ihre Primfaktoren zerlegt werden kann als n=p1k1⋅p2k2⋯pmkmn = p_1^{k_1} \cdot p_2^{k_2} \cdots p_m^{k_m}n=p1k1​​⋅p2k2​​⋯pmkm​​, wird die Totient-Funktion wie folgt berechnet:

ϕ(n)=n(1−1p1)(1−1p2)⋯(1−1pm)\phi(n) = n \left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_m}\right)ϕ(n)=n(1−p1​1​)(1−p2​1​)⋯(1−pm​1​)

Die Euler'sche Totient-Funktion hat bedeutende Anwendungen

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

PWM-Modulation

Die Pulsweitenmodulation (PWM) ist eine Technik zur Steuerung der Leistung an elektrischen Geräten, indem das Verhältnis von Ein- und Ausschaltzeiten eines Signals variiert wird. Bei PWM wird ein digitales Signal mit einer konstanten Frequenz erzeugt, dessen Pulsbreite (die Zeit, in der das Signal auf "hoch" steht) moduliert wird, um die effektive Spannung zu steuern. Das bedeutet, dass je länger der Puls im Vergleich zur Gesamtperiode ist, desto mehr Energie wird zum Verbraucher geleitet.

Die PWM kann mathematisch durch die Duty-Cycle-Formel beschrieben werden:

Duty Cycle(%)=(TONTON+TOFF)×100\text{Duty Cycle} (\%) = \left( \frac{T_{ON}}{T_{ON} + T_{OFF}} \right) \times 100Duty Cycle(%)=(TON​+TOFF​TON​​)×100

wobei TONT_{ON}TON​ die Zeit ist, in der das Signal aktiv ist, und TOFFT_{OFF}TOFF​ die Zeit, in der das Signal inaktiv ist. Diese Methode findet breite Anwendung in der Steuerung von Motoren, der Dimmtechnik für LEDs und in der Regelung von Heizsystemen, da sie eine präzise Kontrolle der Leistung bei minimalem Energieverlust ermöglicht.

Effiziente Markthypothese - schwache Form

Die Efficient Market Hypothesis (EMH) Weak Form postuliert, dass alle historischen Preisdaten in den aktuellen Marktpreisen enthalten sind. Das bedeutet, dass es unmöglich ist, durch die Analyse vergangener Preise, wie z.B. Trends oder Muster, systematisch überdurchschnittliche Renditen zu erzielen. Die Grundlage dieser Hypothese ist die Annahme, dass Marktteilnehmer rational handeln und alle verfügbaren Informationen sofort in die Preise einfließen.

Ein zentraler Aspekt der schwachen Form ist, dass technische Analyse, die sich auf historische Kursbewegungen stützt, keine überlegenen Ergebnisse liefert. Dies impliziert, dass Zufallsbewegungen der Preise den Markt dominieren und zukünftige Preisbewegungen nicht vorhersagbar sind. In mathematischen Begriffen kann man sagen, dass Preisänderungen ΔPt\Delta P_tΔPt​ unabhängig und identisch verteilt sind, was den Markt als effizient klassifiziert.

Differentialgleichungsmodellierung

Differentialgleichungsmodellierung ist ein leistungsfähiges Werkzeug zur Beschreibung dynamischer Systeme, die sich im Laufe der Zeit ändern. Diese Modelle verwenden Differentialgleichungen, um die Beziehungen zwischen Variablen und deren Änderungsraten zu erfassen. Typische Anwendungsgebiete sind unter anderem Biologie (z.B. Populationsdynamik), Physik (z.B. Bewegungsgesetze) und Wirtschaft (z.B. Wachstumsmodelle).

Ein einfaches Beispiel ist das exponentielle Wachstumsmodell, das durch die Gleichung

dPdt=rP\frac{dP}{dt} = rPdtdP​=rP

beschrieben wird, wobei PPP die Population, rrr die Wachstumsrate und ttt die Zeit darstellt. Die Lösung dieser Gleichung ermöglicht es, Vorhersagen über das Verhalten des Systems unter verschiedenen Bedingungen zu treffen. Durch die Analyse solcher Modelle können Forscher und Entscheidungsträger besser informierte Entscheidungen treffen, basierend auf den erwarteten Veränderungen im System.

Federated Learning Optimierung

Federated Learning Optimization bezieht sich auf die Techniken und Strategien, die angewendet werden, um den Lernprozess in einem föderierten Lernsystem zu verbessern. In einem solchen System werden Modelle lokal auf mehreren Geräten oder Servern trainiert, ohne dass die Daten diese Geräte verlassen. Dies bedeutet, dass die Optimierung nicht nur die Genauigkeit des Modells, sondern auch die Effizienz der Datenübertragung und die Vermeidung von Datenschutzverletzungen berücksichtigen muss.

Die Optimierung erfolgt oft durch die Aggregation von lokalen Modellupdates, wobei die globalen Modelle aktualisiert werden, um eine bessere Leistung zu erzielen. Ein häufig verwendetes Verfahren ist das Federated Averaging, bei dem die Gewichte der lokalen Modelle gewichtet und kombiniert werden. Mathematisch ausgedrückt wird der neue globale Modellparameter www durch die Formel

wt+1=wt+∑k=1KnknΔwkw_{t+1} = w_t + \sum_{k=1}^{K} \frac{n_k}{n} \Delta w_kwt+1​=wt​+k=1∑K​nnk​​Δwk​

bestimmt, wobei nkn_knk​ die Anzahl der Datenpunkte auf dem k-ten Gerät ist und nnn die Gesamtzahl der Datenpunkte. Ziel ist es, die Effizienz und Genauigkeit unter Berücksichtigung der dezentralen Datenverteilung zu maximieren.

Risikovermeidung

Risk Aversion beschreibt die Neigung von Individuen oder Institutionen, Risiken zu vermeiden oder abzulehnen, selbst wenn dies bedeutet, auf potenzielle Gewinne zu verzichten. Menschen, die risikoscheu sind, bevorzugen sichere Ergebnisse gegenüber riskanteren Alternativen, auch wenn die risikobehafteten Optionen eine höhere erwartete Rendite bieten. Diese Verhaltenstendenz kann durch verschiedene psychologische und wirtschaftliche Faktoren beeinflusst werden, wie zum Beispiel die Verlustaversion, bei der Verluste als schmerzhafter empfunden werden als Gewinne als angenehm. Mathematisch kann Risk Aversion durch die Nutzenfunktion beschrieben werden, die oft als konkav dargestellt wird, was bedeutet, dass der marginale Nutzen mit steigendem Vermögen abnimmt. Ein Beispiel für eine Nutzenfunktion ist U(x)=xU(x) = \sqrt{x}U(x)=x​, wobei xxx das Vermögen darstellt; diese Form zeigt, dass der zusätzliche Nutzen eines weiteren Euro abnimmt, je mehr Geld man hat.

Medizinische Bildgebung Deep Learning

Medical Imaging Deep Learning bezieht sich auf den Einsatz von künstlichen neuronalen Netzwerken zur Analyse und Interpretation medizinischer Bilder, wie z.B. Röntgenaufnahmen, CT-Scans und MRT-Bilder. Diese Technologien ermöglichen es, komplexe Muster in den Bilddaten zu erkennen, die für das menschliche Auge oft schwer zu identifizieren sind. Der Prozess umfasst typischerweise die folgenden Schritte:

  1. Datensammlung: Große Mengen an annotierten Bilddaten werden benötigt, um das Modell zu trainieren.
  2. Vorverarbeitung: Die Bilder werden bearbeitet, um Rauschen zu reduzieren und die Qualität zu verbessern.
  3. Modelltraining: Durch den Einsatz von Deep-Learning-Algorithmen, wie z.B. Convolutional Neural Networks (CNNs), wird das Modell trainiert, um Merkmale zu erkennen und Diagnosen zu stellen.
  4. Evaluation: Die Leistung des Modells wird überprüft, um sicherzustellen, dass es genaue und zuverlässige Ergebnisse liefert.

Diese Technologien haben das Potenzial, die Diagnosegenauigkeit zu verbessern und die Effizienz in der medizinischen Bildgebung signifikant zu erhöhen.