StudierendeLehrende

Polymer Electrolyte Membranes

Polymer Electrolyte Membranes (PEMs) sind spezielle Materialien, die als Elektrolyt in Brennstoffzellen und anderen elektrochemischen Systemen eingesetzt werden. Sie bestehen aus polymeren Materialien, die ionenleitend sind und gleichzeitig eine hohe chemische Stabilität aufweisen. PEMs ermöglichen den Transport von Protonen (H+^++) von der Anode zur Kathode, während sie Elektronen im äußeren Stromkreis leiten. Diese Eigenschaften sind entscheidend für die Effizienz von Brennstoffzellen, da sie die Umwandlung von chemischer Energie in elektrische Energie ermöglichen. Zu den häufig verwendeten Materialien für PEMs gehören Nafion und andere sulfonierte Polymere, die eine hohe Protonenleitfähigkeit aufweisen. Die Entwicklung und Optimierung dieser Membranen ist ein aktives Forschungsfeld, um die Leistung und Lebensdauer von Brennstoffzellen zu verbessern.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Protein-Kristallographie-Optimierung

Die Protein-Kristallographie-Refinement ist ein entscheidender Schritt in der strukturellen Biologie, der darauf abzielt, die Qualität und Genauigkeit der aus Kristallstrukturdaten gewonnenen Modelle zu verbessern. Nach der ersten Lösung der Struktur wird ein anfängliches Modell erstellt, das dann durch verschiedene Refinement-Techniken optimiert wird. Dabei werden die Unterschiede zwischen den experimentell beobachteten und den berechneten Röntgenbeugungsmustern minimiert. Dies geschieht häufig durch die Anpassung von Atomen, die Verbesserung der Geometrie und die Minimierung von Energie. Typische Verfahren sind das Least Squares Refinement, bei dem der Unterschied zwischen den beobachteten und vorhergesagten Intensitäten minimiert wird, sowie die Verwendung von B-Faktoren, um die thermische Bewegung von Atomen zu berücksichtigen. Letztendlich resultiert dieser Prozess in einer verfeinerten Struktur, die ein genaueres Bild der räumlichen Anordnung von Atomen im Protein vermittelt.

Patricia Trie

Eine Patricia Trie (Präfixbaum) ist eine spezialisierte Datenstruktur zur effizienten Speicherung und Suche von Zeichenketten. Sie ist eine Variante der Trie-Datenstruktur, die redundante Knoten eliminiert, indem sie Knoten mit nur einem Kind zusammenfasst. Dies führt zu einer kompakten Darstellung, die besonders nützlich ist, wenn viele Zeichenketten gemeinsame Präfixe haben.

Die Hauptoperationen, die mit einer Patricia Trie durchgeführt werden können, sind das Einfügen, Suchen und Löschen von Zeichenketten. Die Komplexität für diese Operationen liegt in der Regel bei O(k)O(k)O(k), wobei kkk die Länge der längsten Zeichenkette in der Struktur ist. Ein weiterer Vorteil der Patricia Trie ist, dass sie eine schnelle Suche ermöglicht, was sie ideal für Anwendungen wie Autovervollständigung oder Wortsuche macht.

Fermi-Dirac

Die Fermi-Dirac-Statistik beschreibt das Verhalten von Teilchen, die als Fermionen klassifiziert werden, wie Elektronen, Protonen und Neutronen. Diese Teilchen unterliegen dem Pauli-Prinzip, das besagt, dass nicht zwei identische Fermionen denselben Quantenzustand einnehmen können. Die Fermi-Dirac-Verteilung gibt die Wahrscheinlichkeit an, dass ein Energieniveau bei einer bestimmten Temperatur besetzt ist, und wird durch die Formel

f(E)=1e(E−μ)/(kT)+1f(E) = \frac{1}{e^{(E - \mu) / (kT)} + 1}f(E)=e(E−μ)/(kT)+11​

definiert, wobei EEE die Energie des Zustands, μ\muμ das chemische Potential, kkk die Boltzmann-Konstante und TTT die Temperatur in Kelvin darstellt. Diese Statistik ist besonders wichtig in der Festkörperphysik, da sie das Verhalten von Elektronen in Metallen und Halbleitern erklärt. Die Fermi-Dirac-Verteilung zeigt, dass bei niedrigen Temperaturen die meisten Zustände mit niedriger Energie besetzt sind, während bei höheren Temperaturen auch höhere Energieniveaus besetzt werden können.

Fourier-Transform-Infrarotspektroskopie

Die Fourier Transform Infrared Spectroscopy (FTIR) ist eine leistungsstarke analytische Technik, die verwendet wird, um die chemische Zusammensetzung von Materialien zu bestimmen. Sie basiert auf der Absorption von Infrarotstrahlung durch Moleküle, wobei jede chemische Verbindung charakteristische Absorptionsbanden im Infrarotbereich aufweist. Bei FTIR wird die gesamte Infrarotspektren eines Samples simultan erfasst, was durch die Anwendung der Fourier-Transformation ermöglicht wird.

Diese Methode bietet mehrere Vorteile, darunter:

  • Hohe Empfindlichkeit: FTIR kann sehr geringe Konzentrationen von Substanzen nachweisen.
  • Schnelligkeit: Die Analyse erfolgt in der Regel innerhalb von Sekunden bis Minuten.
  • Vielfältige Anwendung: FTIR findet Anwendung in der Chemie, Biologie, Materialwissenschaft und Pharmazie.

Die resultierenden Spektren zeigen die Intensität der absorbierten Strahlung in Abhängigkeit von der Wellenlänge, was es ermöglicht, die spezifischen funktionellen Gruppen in einer Probe zu identifizieren.

Harberger-Dreieck

Das Harberger-Dreieck ist ein Konzept aus der ökonomischen Theorie, das die Wohlfahrtsverluste beschreibt, die durch Steuererhebungen oder Marktverzerrungen entstehen. Es veranschaulicht, wie eine Steuer auf ein Gut die Effizienz des Marktes beeinträchtigt, indem sie das Konsumverhalten verändert und somit die Gesamtwohlfahrt verringert. Das Dreieck entsteht durch die Differenz zwischen der Konsumenten- und Produzentenrente vor und nach der Einführung einer Steuer.

In der grafischen Darstellung zeigt das Harberger-Dreieck die Flächenveränderungen der Rente, die verloren gehen, weil die Steuer den Preis und die Menge des gehandelten Gutes beeinflusst. Die Formel für die Wohlfahrtsverluste könnte als
WL=12×Basis×Ho¨heWL = \frac{1}{2} \times \text{Basis} \times \text{Höhe}WL=21​×Basis×Ho¨he
dargestellt werden, wobei die Basis die Menge und die Höhe die Steuer ist. Insgesamt verdeutlicht das Harberger-Dreieck, dass solche Verzerrungen nicht nur die Marktteilnehmer, sondern auch die gesamtwirtschaftliche Effizienz negativ beeinflussen.

Cayley-Diagramme

Cayley-Diagramme sind eine grafische Darstellung von Gruppen, die eine Verbindung zwischen algebraischen Strukturen und Graphen herstellen. Ein Cayley-Graph wird für eine Gruppe GGG und eine Menge von Erzeugern SSS konstruiert, wobei jeder Knoten im Graphen ein Element der Gruppe repräsentiert. Zwei Knoten ggg und hhh sind durch eine Kante verbunden, wenn hhh durch die Anwendung eines Erzeugers s∈Ss \in Ss∈S auf ggg erreicht werden kann, d.h. h=gsh = gsh=gs.

Die Eigenschaften eines Cayley-Graphs sind vielfältig: Sie sind zusammenhängend, wenn die Erzeugermenge SSS die Gruppe vollständig abdeckt, und sie bieten Einblicke in die Struktur und Symmetrie der Gruppe. Cayley-Graphen sind ein wertvolles Werkzeug in der Algebra und der theoretischen Informatik, da sie helfen, die Beziehung zwischen verschiedenen Gruppen zu visualisieren und zu analysieren.