StudierendeLehrende

Perovskite Lattice Distortion Effects

Perovskite-Materialien, die eine spezifische kristalline Struktur aufweisen, können durch verschiedene Faktoren, wie Temperatur oder chemische Zusammensetzung, Verzerrungen im Gitter erfahren. Diese Gitterverzerrungen können signifikante Auswirkungen auf die physikalischen Eigenschaften des Materials haben, einschließlich der elektrischen Leitfähigkeit, der optischen Eigenschaften und der thermischen Stabilität. Insbesondere können solche Verzerrungen die Bandstruktur beeinflussen und damit die Effizienz von Materialien in Anwendungen wie Solarzellen oder Katalysatoren erhöhen.

Ein Beispiel für die mathematische Beschreibung eines Gittermodells ist die Verwendung von aaa als Gitterkonstante und bbb als Verzerrungsparameter, wo die Verzerrung als ϵ=b−aa\epsilon = \frac{b - a}{a}ϵ=ab−a​ definiert werden kann. Diese Verzerrungen können auch zu Phasenübergängen führen, die die Stabilität und die Leistungsfähigkeit der Materialien in praktischen Anwendungen beeinflussen. Zusammengefasst sind die Gitterverzerrungen in Perovskiten ein zentrales Thema in der Materialwissenschaft, da sie direkt mit der Funktionalität und den Einsatzbereichen dieser vielseitigen Materialien verknüpft sind.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Wannier-Funktion

Die Wannier-Funktion ist ein Konzept aus der Festkörperphysik, das verwendet wird, um die Elektronenwellenfunktionen in einem Kristallgitter zu beschreiben. Sie stellt eine lokalisierte Darstellung der Elektronenzustände dar und ist besonders nützlich für die Analyse von Bandstrukturen und topologischen Eigenschaften von Materialien. Mathematisch wird eine Wannier-Funktion Wn(r)W_n(\mathbf{r})Wn​(r) aus den Bloch-Funktionen ψn,k(r)\psi_{n,\mathbf{k}}(\mathbf{r})ψn,k​(r) abgeleitet, indem eine Fourier-Transformation über den gesamten Brillouin-Zone-Bereich durchgeführt wird:

Wn(r)=1N∑keik⋅rψn,k(r),W_n(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{r}} \psi_{n,\mathbf{k}}(\mathbf{r}),Wn​(r)=N​1​k∑​eik⋅rψn,k​(r),

wobei NNN die Anzahl der k-punkte ist. Die Wannier-Funktionen sind orthonormiert und können verwendet werden, um die elektronischen Eigenschaften von Materialien zu untersuchen, insbesondere in Bezug auf Korrelationsphänomene und wenig-kopplungs Modelle. Ihre Lokalisierung ermöglicht es, die Wechselwirkungen zwischen Elektronen in einem Kristall effektiv zu simulieren und zu verstehen.

Quanten-Spin-Flüssigkeiten

Quantum Spin Liquids sind faszinierende Zustände der Materie, die bei niedrigen Temperaturen auftreten und sich durch eine unordentliche Anordnung von Spins auszeichnen. Im Gegensatz zu klassischen magnetischen Materialien, in denen Spins in geordneten Mustern ausgerichtet sind, bleiben die Spins in einem Quantum Spin Liquid in einem dynamischen Zustand der Unordnung, sogar bei Temperaturen nahe dem absoluten Nullpunkt. Dies bedeutet, dass die Spins nicht in einen stabilen Zustand übergehen, sondern miteinander interagieren und dabei ein komplexes Wechselspiel erzeugen.

Ein bemerkenswertes Merkmal von Quantum Spin Liquids ist die Existenz von frustrierten Interaktionen, bei denen die Spins nicht gleichzeitig in energetisch günstige Zustände gebracht werden können. Dies führt zu einem Zustand, der von topologischen Eigenschaften geprägt ist, die für die Entwicklung von Quantencomputern von großem Interesse sind. Die Untersuchung von Quantum Spin Liquids bietet Einblicke in fundamentale physikalische Konzepte und hat potenzielle Anwendungen in der Materialwissenschaft und Quanteninformationstheorie.

Koopman-Operator

Der Koopman Operator ist ein mathematisches Konzept, das in der dynamischen Systemtheorie verwendet wird, um das Verhalten nichtlinearer Systeme zu analysieren. Er betrachtet die Entwicklung von Funktionen, die auf den Zustandsräumen eines dynamischen Systems definiert sind, und erlaubt es, die Dynamik des Systems in einem höheren dimensionalen Raum zu untersuchen. Der Operator K\mathcal{K}K ist definiert als:

Kf(x)=f(ϕ(t,x))\mathcal{K} f(x) = f(\phi(t, x))Kf(x)=f(ϕ(t,x))

wobei fff eine messbare Funktion ist, xxx der Zustand des Systems und ϕ(t,x)\phi(t, x)ϕ(t,x) die Flussfunktion, die die Zeitentwicklung des Systems beschreibt. Im Gegensatz zu traditionellen Ansätzen, die oft auf den Zustand selbst fokussiert sind, ermöglicht der Koopman Operator die Untersuchung von observablen Größen und deren zeitlicher Entwicklung, was insbesondere in der modernen Datenanalyse und Maschinelles Lernen von Bedeutung ist. Durch die Anwendung des Koopman Operators können Forscher auch lineare Techniken verwenden, um nichtlineare Systeme zu analysieren, was neue Perspektiven und Werkzeuge für die Systemanalyse eröffnet.

Polymer-Elektrolytmembranen

Polymer Electrolyte Membranes (PEMs) sind spezielle Materialien, die als Elektrolyt in Brennstoffzellen und anderen elektrochemischen Systemen eingesetzt werden. Sie bestehen aus polymeren Materialien, die ionenleitend sind und gleichzeitig eine hohe chemische Stabilität aufweisen. PEMs ermöglichen den Transport von Protonen (H+^++) von der Anode zur Kathode, während sie Elektronen im äußeren Stromkreis leiten. Diese Eigenschaften sind entscheidend für die Effizienz von Brennstoffzellen, da sie die Umwandlung von chemischer Energie in elektrische Energie ermöglichen. Zu den häufig verwendeten Materialien für PEMs gehören Nafion und andere sulfonierte Polymere, die eine hohe Protonenleitfähigkeit aufweisen. Die Entwicklung und Optimierung dieser Membranen ist ein aktives Forschungsfeld, um die Leistung und Lebensdauer von Brennstoffzellen zu verbessern.

Marshallian Nachfrage

Die Marshallian Demand beschreibt die Menge eines Gutes, die ein Konsument nachfragt, um seinen Nutzen zu maximieren, gegeben ein bestimmtes Einkommen und die Preise der Güter. Diese Nachfragefunktion basiert auf der Annahme, dass Konsumenten rational handeln und ihre Ressourcen effizient einsetzen. Der Prozess zur Bestimmung der Marshallian Demand umfasst die Lösung des Optimierungsproblems, bei dem der Nutzen maximiert und die Budgetbeschränkung berücksichtigt wird. Mathematisch lässt sich die Marshallian Demand für ein Gut xxx durch die Gleichung darstellen:

x(p,I)=argmaxx(U(x))unter der Bedingungp⋅x≤Ix(p, I) = \text{argmax}_{x} \left( U(x) \right) \quad \text{unter der Bedingung} \quad p \cdot x \leq Ix(p,I)=argmaxx​(U(x))unter der Bedingungp⋅x≤I

Hierbei steht ppp für den Preis des Gutes, III für das Einkommen und U(x)U(x)U(x) für die Nutzenfunktion des Konsumenten. Die Marshallian Demand ist somit eine zentrale Komponente der Mikroökonomie, da sie zeigt, wie Preisänderungen und Einkommensveränderungen das Konsumverhalten beeinflussen können.

Fama-French

Das Fama-French-Modell ist ein erweitertes Kapitalmarktmodell, das von den Ökonomen Eugene Fama und Kenneth French entwickelt wurde, um die Renditen von Aktien besser zu erklären. Es erweitert das traditionelle Capital Asset Pricing Model (CAPM) um zwei weitere Faktoren: die Größe (Size) und den Buchwert-Marktwert-Verhältnis (Value).

Im Fama-French-Modell wird die erwartete Rendite einer Aktie durch die Formel

E(Ri)=Rf+βi(E(Rm)−Rf)+s⋅SMB+h⋅HMLE(R_i) = R_f + \beta_i (E(R_m) - R_f) + s \cdot SMB + h \cdot HMLE(Ri​)=Rf​+βi​(E(Rm​)−Rf​)+s⋅SMB+h⋅HML

beschrieben, wobei E(Ri)E(R_i)E(Ri​) die erwartete Rendite der Aktie, RfR_fRf​ der risikofreie Zinssatz, βi\beta_iβi​ der Marktrisiko-Faktor, SMBSMBSMB (Small Minus Big) den Größenfaktor und HMLHMLHML (High Minus Low) den Wertfaktor darstellt.

Das Modell zeigt, dass kleinere Unternehmen tendenziell höhere Renditen erzielen als größere Unternehmen und dass Aktien mit einem hohen Buchwert im Vergleich zum Marktwert bessere Renditen bieten als solche mit einem niedrigen Buchwert. Dies macht das Fama-French-Modell zu einem wichtigen Instrument für Investoren und Finanzanalysten zur Bewertung von Aktien und zur Portfolio-Optimierung