StudierendeLehrende

Perovskite Lattice Distortion Effects

Perovskite-Materialien, die eine spezifische kristalline Struktur aufweisen, können durch verschiedene Faktoren, wie Temperatur oder chemische Zusammensetzung, Verzerrungen im Gitter erfahren. Diese Gitterverzerrungen können signifikante Auswirkungen auf die physikalischen Eigenschaften des Materials haben, einschließlich der elektrischen Leitfähigkeit, der optischen Eigenschaften und der thermischen Stabilität. Insbesondere können solche Verzerrungen die Bandstruktur beeinflussen und damit die Effizienz von Materialien in Anwendungen wie Solarzellen oder Katalysatoren erhöhen.

Ein Beispiel für die mathematische Beschreibung eines Gittermodells ist die Verwendung von aaa als Gitterkonstante und bbb als Verzerrungsparameter, wo die Verzerrung als ϵ=b−aa\epsilon = \frac{b - a}{a}ϵ=ab−a​ definiert werden kann. Diese Verzerrungen können auch zu Phasenübergängen führen, die die Stabilität und die Leistungsfähigkeit der Materialien in praktischen Anwendungen beeinflussen. Zusammengefasst sind die Gitterverzerrungen in Perovskiten ein zentrales Thema in der Materialwissenschaft, da sie direkt mit der Funktionalität und den Einsatzbereichen dieser vielseitigen Materialien verknüpft sind.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Stone-Weierstrass-Satz

Das Stone-Weierstrass-Theorem ist ein fundamentales Resultat der Funktionalanalysis, das sich mit der Approximation von Funktionen befasst. Es besagt, dass jede kontinuierliche Funktion auf einem kompakten Intervall [a,b][a, b][a,b] beliebig genau durch Polynome approximiert werden kann, wenn die Menge der approximierenden Funktionen ein algebraisches und trennendes System ist. Genauer gesagt, wenn AAA eine nichtleere, abgeschlossene Menge von reellen Funktionen ist, die auf [a,b][a, b][a,b] definiert sind, und die Bedingungen erfüllt, dass AAA die konstante Funktion enthält und für jede x0x_0x0​ in [a,b][a, b][a,b] eine Funktion f∈Af \in Af∈A existiert, die f(x0)f(x_0)f(x0​) annimmt, dann kann jede kontinuierliche Funktion fff in C([a,b])C([a, b])C([a,b]) durch Funktionen aus AAA approximiert werden. Dies führt zu einem tiefen Verständnis darüber, wie komplexe Funktionen durch einfachere, handhabbare Funktionen dargestellt werden können, und hat weitreichende Anwendungen in der Approximationstheorie und numerischen Analysis.

B-Bäume

B-Trees sind eine spezielle Art von selbstbalancierten Suchbäumen, die in Datenbanken und Dateisystemen weit verbreitet sind. Sie zeichnen sich dadurch aus, dass sie mehrere Kinder pro Knoten haben, was die Anzahl der benötigten Vergleiche zur Suche, Einfügung und Löschung von Daten erheblich reduziert. Ein B-Tree mit einem minimalen Grad ttt hat folgende Eigenschaften:

  • Jeder Knoten kann zwischen t−1t-1t−1 und 2t−12t-12t−1 Schlüsselwerten speichern.
  • Die Wurzel hat mindestens einen Schlüssel, es sei denn, der Baum ist leer.
  • Alle Blätter befinden sich auf derselben Ebene.

Diese Struktur sorgt dafür, dass der Baum immer balanciert bleibt, wodurch die Operationen im Durchschnitt und im schlimmsten Fall in logarithmischer Zeit O(log⁡n)O(\log n)O(logn) ausgeführt werden können. B-Trees sind besonders effizient, wenn es um die Speicherung von großen Datenmengen auf externen Speichermedien geht, da sie die Anzahl der Lese- und Schreibvorgänge minimieren.

Fama-French-Drei-Faktoren-Modell

Das Fama-French Three-Factor Model erweitert das traditionelle Capital Asset Pricing Model (CAPM), indem es zusätzlich zu den marktweiten Risiken zwei weitere Faktoren einführt, die die Renditen von Aktien beeinflussen. Diese Faktoren sind:

  1. Größenfaktor (SMB - Small Minus Big): Dieser Faktor misst die Renditedifferenz zwischen kleinen und großen Unternehmen. Historisch haben kleinere Unternehmen tendenziell höhere Renditen erzielt als größere Unternehmen.

  2. Wertfaktor (HML - High Minus Low): Dieser Faktor erfasst die Renditedifferenz zwischen Unternehmen mit hohen Buchwert-Marktwert-Verhältnissen (Wertaktien) und solchen mit niedrigen Buchwert-Marktwert-Verhältnissen (Wachstumsaktien). Auch hier zeigen historische Daten, dass Wertaktien oft bessere Renditen erzielen als Wachstumsaktien.

Die mathematische Darstellung des Modells lautet:

Ri−Rf=α+β(Rm−Rf)+s⋅SMB+h⋅HML+ϵR_i - R_f = \alpha + \beta (R_m - R_f) + s \cdot SMB + h \cdot HML + \epsilonRi​−Rf​=α+β(Rm​−Rf​)+s⋅SMB+h⋅HML+ϵ

Hierbei steht RiR_iRi​ für die Rendite des Wertpapiers, RfR_fRf​ für den risikofreien Zinssatz, RmR_mRm​ für die Marktrendite, und α\alphaα, β\betaβ, $

Dreiphasen-Gleichrichter

Ein Dreiphasen-Gleichrichter ist ein elektronisches Gerät, das Wechselstrom (AC) aus einem dreiphasigen System in Gleichstrom (DC) umwandelt. Er besteht typischerweise aus sechs Dioden oder Transistoren, die in einem bestimmten Schema angeordnet sind, um die positiven Halbwellen der drei Phasen zu nutzen. Der Vorteil eines Dreiphasen-Gleichrichters liegt in seiner Fähigkeit, eine gleichmäßigere und stabilere Gleichstromausgangsspannung zu liefern, da die Wellenform der Ausgangsspannung weniger ripple (Welligkeit) aufweist als bei einem einphasigen Gleichrichter.

Mathematisch kann die durchschnittliche Ausgangsspannung eines idealen dreiphasigen Gleichrichters durch die Gleichung

VDC=32πVLLV_{DC} = \frac{3 \sqrt{2}}{\pi} V_{LL}VDC​=π32​​VLL​

beschrieben werden, wobei VLLV_{LL}VLL​ die Spitzenspannung zwischen den Phasen ist. Diese Gleichrichter finden häufig Anwendung in der industriellen Stromversorgung, bei der Erzeugung von Gleichstrom für Motorantriebe und in der Leistungselektronik.

Cantor-Funktion

Die Cantor-Funktion, auch bekannt als Cantor-Verteilung oder Blasius-Funktion, ist eine interessante und berühmte Funktion in der Mathematik, die auf dem Cantor-Mengen basiert. Sie ist definiert auf dem Intervall [0,1][0, 1][0,1] und hat die bemerkenswerte Eigenschaft, dass sie überall stetig ist, aber an keiner Stelle eine Ableitung hat, was sie zu einem Beispiel für eine stetige, aber nicht differenzierbare Funktion macht.

Die Funktion wird häufig verwendet, um das Konzept der Masse und Verteilung in der Maßtheorie zu veranschaulichen. Sie wird konstruiert, indem man das Intervall [0,1][0, 1][0,1] in drei Teile zerlegt, den mittleren Teil entfernt und dann diese Operation wiederholt. Der Funktionswert wird auf die verbleibenden Teile so zugeordnet, dass der Funktionswert bei den entfernten Punkten gleich 0 bleibt und die Werte der verbleibenden Punkte stetig ansteigen. Die Cantor-Funktion kann formell beschrieben werden durch:

C(x)={0wenn x=01wenn x=1eine stetige Funktion auf [0,1]C(x) = \begin{cases} 0 & \text{wenn } x = 0 \\ 1 & \text{wenn } x = 1 \\ \text{eine stetige Funktion auf } [0, 1] \end{cases}C(x)=⎩⎨⎧​01eine stetige Funktion auf [0,1]​wenn x=0wenn x=1​

Die Cantor-Funktion ist

DNA-Methylierung in der Epigenetik

Die DNA-Methylierung ist ein zentraler Mechanismus der Epigenetik, der die Genexpression ohne Änderungen der DNA-Sequenz beeinflusst. Bei der Methylierung wird eine Methylgruppe (-CH₃) an das Cytosin-Nukleotid in bestimmten DNA-Sequenzen angeheftet, häufig in der Nähe von Promotorregionen. Dieser Prozess kann die Aktivität von Genen regulieren, indem er das Anheften von Transkriptionsfaktoren und anderen Proteinen an die DNA blockiert oder erleichtert. Methylierungsmuster sind oft spezifisch für bestimmte Zelltypen und können durch Umwelteinflüsse, Ernährung oder Alterung verändert werden. Diese Veränderungen können tiefgreifende Auswirkungen auf Gesundheit und Krankheit haben, indem sie beispielsweise das Risiko für Krebserkrankungen oder neurodegenerative Erkrankungen beeinflussen. Schließlich ist die Erforschung der DNA-Methylierung ein vielversprechendes Feld in der Biomedizin, da sie potenzielle Ansätze für Therapien und diagnostische Werkzeuge bietet.