Fama-French Model

Das Fama-French-Modell ist ein weit verbreitetes Asset-Pricing-Modell, das 1993 von den Finanzökonomen Eugene Fama und Kenneth French entwickelt wurde. Es erweitert das traditionelle Capital Asset Pricing Model (CAPM), indem es neben dem Marktrisiko auch zwei weitere Faktoren berücksichtigt: die Größe (Size) und die Wachstumsrate (Value) von Unternehmen.

Das Modell postuliert, dass Aktien von kleinen Unternehmen (Small Caps) tendenziell höhere Renditen erzielen als Aktien von großen Unternehmen (Large Caps), und dass Aktien mit niedrigem Kurs-Gewinn-Verhältnis (Value Stocks) bessere Renditen liefern als solche mit hohem Kurs-Gewinn-Verhältnis (Growth Stocks). Mathematisch lässt sich das Fama-French-Modell wie folgt darstellen:

Ri=Rf+βi(RmRf)+sSMB+hHMLR_i = R_f + \beta_i (R_m - R_f) + s \cdot SMB + h \cdot HML

Hierbei steht RiR_i für die erwartete Rendite eines Wertpapiers, RfR_f für den risikofreien Zinssatz, RmR_m für die Marktrendite, SMBSMB (Small Minus Big) für die Renditedifferenz zwischen kleinen und großen Unternehmen und HMLHML (High Minus Low) für die Renditedifferenz zwischen wertvollen und

Weitere verwandte Begriffe

Oberflächenplasmonenresonanz-Tuning

Surface Plasmon Resonance (SPR) Tuning ist ein Verfahren, das es ermöglicht, die optischen Eigenschaften von Oberflächenplasmonen zu steuern, die an der Grenzfläche zwischen einem Metall und einem Dielektrikum entstehen. Diese Resonanzphänomene sind empfindlich gegenüber Änderungen in der Umgebung, wie z.B. der Brechungsindexänderung, was sie ideal für Biosensoren und analytische Anwendungen macht. Durch gezielte Modifikationen der Metalloberfläche, wie z.B. durch die Variation der Dicke des Metalls, die Verwendung unterschiedlicher Materialkombinationen oder die Anpassung der Wellenlängen des einfallenden Lichts, kann die Resonanzbedingung optimiert werden.

Die mathematische Beziehung, die diesem Phänomen zugrunde liegt, kann durch die Gleichung

λ=2πck\lambda = \frac{2\pi c}{k}

ausgedrückt werden, wobei λ\lambda die Wellenlänge, cc die Lichtgeschwindigkeit und kk die Wellenzahl ist. Darüber hinaus spielen auch Parameter wie Temperatur und chemische Umgebung eine Rolle, weshalb das Verständnis von SPR-Tuning für die Entwicklung hochsensitiver Sensoren von entscheidender Bedeutung ist.

H-Brücken-Wechselrichtertopologie

Die H-Bridge Inverter Topology ist eine grundlegende Schaltung, die häufig in der Leistungselektronik verwendet wird, um Gleichstrom (DC) in Wechselstrom (AC) umzuwandeln. Sie besteht aus vier Schaltern, die in einer H-Form angeordnet sind, wobei jeder Schalter typischerweise ein Transistor ist. Durch das gezielte Ein- und Ausschalten dieser Schalter kann die Polung der Ausgangsspannung verändert werden, was zur Erzeugung eines sinusförmigen oder pulsierenden Wechselstroms führt.

Die Schaltung ermöglicht es, die Ausgangsspannung VoutV_{out} zu steuern, indem die Schalter in einer bestimmten Reihenfolge aktiviert werden. Dies führt zu einem effektiven Wechsel von positiver und negativer Spannung, was die Erzeugung von AC-Strom mit variabler Frequenz und Amplitude ermöglicht. Eine wichtige Anwendung dieser Topologie findet sich in Motorantrieben, wo sie zur Steuerung der Drehzahl und des Drehmoments von Elektromotoren eingesetzt wird.

Zusammengefasst ist die H-Bridge eine vielseitige und effiziente Lösung zur Umwandlung von DC in AC, die in vielen technischen Anwendungen von entscheidender Bedeutung ist.

Markov-Switching-Modelle der Geschäftszyklen

Markov-Switching-Modelle sind eine Klasse von statistischen Modellen, die in der Ökonometrie verwendet werden, um die dynamischen Eigenschaften von Konjunkturzyklen zu analysieren. Diese Modelle basieren auf der Annahme, dass die Wirtschaft in verschiedene Zustände oder Regime wechseln kann, die jeweils unterschiedliche Verhaltensweisen aufweisen, wie z.B. Expansion oder Rezession. Der Wechsel zwischen diesen Zuständen erfolgt gemäß einem Markov-Prozess, was bedeutet, dass der aktuelle Zustand nur von dem vorherigen abhängt und nicht von der gesamten Vorgeschichte.

Mathematisch wird dies oft durch die Zustandsübergangsmatrix PP dargestellt, die die Wahrscheinlichkeiten für den Übergang von einem Zustand in einen anderen beschreibt. Die Fähigkeit, sich zwischen verschiedenen Zuständen zu bewegen, ermöglicht es den Modellen, komplexe und sich verändernde wirtschaftliche Bedingungen besser abzubilden. Dadurch können Markov-Switching-Modelle nützliche Einblicke in die Vorhersage und das Management von wirtschaftlichen Schwankungen bieten.

Sparsame Matrixdarstellung

Eine sparse matrix (dünnbesetzte Matrix) ist eine Matrix, in der die Mehrheit der Elemente den Wert null hat. In der mathematischen und computergestützten Wissenschaft ist die effiziente Speicherung und Verarbeitung solcher Matrizen von großer Bedeutung, da die herkömmliche Speicherung viel Speicherplatz und Rechenressourcen beanspruchen würde. Um dies zu vermeiden, werden spezielle Sparse Matrix Representation-Techniken verwendet. Zu den gängigsten Ansätzen gehören:

  • Compressed Sparse Row (CSR): Speichert die nicht-null Werte, die Spaltenindizes und Zeilenzeiger in separaten Arrays.
  • Compressed Sparse Column (CSC): Ähnlich wie CSR, aber die Daten werden spaltenweise gespeichert.
  • Coordinate List (COO): Speichert die nicht-null Werte zusammen mit ihren Zeilen- und Spaltenindizes in einer Liste.

Durch diese repräsentativen Methoden kann der Speicherbedarf erheblich reduziert werden, was zu schnelleren Berechnungen und geringerer Speichernutzung führt.

Holt-Winters

Das Holt-Winters-Modell ist ein Verfahren zur exponentiellen Glättung, das insbesondere für Zeitreihen mit saisonalen Mustern verwendet wird. Es kombiniert drei Komponenten: Niveau, Trend und Saison. Die Methode verwendet dabei die folgenden Parameter:

  • α\alpha: Glättungsfaktor für das Niveau
  • β\beta: Glättungsfaktor für den Trend
  • γ\gamma: Glättungsfaktor für die Saisonalität

Das Modell wird in zwei Hauptvarianten unterteilt: die additive und die multiplikative Version. Während die additive Version geeignet ist, wenn die saisonalen Schwankungen konstant sind, wird die multiplikative Version verwendet, wenn die saisonalen Effekte proportional zur Höhe des Niveaus sind. Die Berechnungen erfolgen iterativ, wobei jede neue Schätzung auf den vorherigen Werten basiert, was eine dynamische Anpassung an die Veränderungen in der Zeitreihe ermöglicht.

Cuda-Beschleunigung

CUDA Acceleration (Compute Unified Device Architecture) ist eine von NVIDIA entwickelte Technologie, die es Programmierern ermöglicht, die Rechenleistung von NVIDIA-Grafikprozessoren (GPUs) für allgemeine Berechnungen zu nutzen. Durch die Nutzung von CUDA können komplexe Berechnungen parallelisiert werden, was zu erheblichen Geschwindigkeitsvorteilen führt, insbesondere bei rechenintensiven Anwendungen wie maschinellem Lernen, Computergrafik und wissenschaftlichen Simulationen.

Die Programmierung mit CUDA erfolgt meist in C, C++ oder Fortran und ermöglicht es Entwicklern, spezielle Funktionen für die GPU zu definieren, die dann effizient auf großen Datenmengen ausgeführt werden können. Ein typisches CUDA-Programm besteht aus der Definition von Kernels – Funktionen, die auf vielen Threads gleichzeitig laufen. Dies führt zu einer Ausführungsgeschwindigkeit, die oft mehrere hundert Male schneller ist als die von herkömmlichen CPU-basierten Berechnungen.

Zusammenfassend lässt sich sagen, dass CUDA Acceleration eine leistungsstarke Methode zur Beschleunigung von Berechnungen ist, die durch die parallele Verarbeitung auf GPUs ermöglicht wird und insbesondere in Bereichen von Vorteil ist, die hohe Rechenleistung erfordern.

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.