Die Fano-Resonanz beschreibt ein Phänomen in der Quantenmechanik und der Festkörperphysik, bei dem die Wechselwirkungen zwischen diskreten Energieniveaus und einem kontinuierlichen Spektrum zu einem charakteristischen asymmetrischen Resonanzprofil führen. Dieses Verhalten tritt oft in Systemen auf, die aus einem gebundenen Zustand (z.B. einem quantenmechanischen Zustand) und einem breiten Kontinuum von Zuständen (z.B. ein Band von Energiezuständen) bestehen.
Ein typisches Beispiel ist die Wechselwirkung zwischen einem einzelnen Atom oder Molekül und einem Photon, das in ein Material eindringt. Die Fano-Resonanz kann mathematisch durch die Fano-Gleichung beschrieben werden, die die Intensität der beobachteten Resonanz als Funktion der Energie darstellt und in der Regel die Form hat:
Hierbei steht für das Verhältnis der Kopplungsstärken, ist die Position der Resonanz, und beschreibt die Breite der Resonanz. Die Bedeutung der Fano-Resonanz liegt in ihrer Fähigkeit, spezifische physikalische Eigenschaften zu erklären, die
Der Zeeman-Effekt beschreibt das Phänomen, bei dem sich die Spektrallinien eines Atoms oder Moleküls aufspalten, wenn es sich in einem externen Magnetfeld befindet. Dieses Verhalten tritt auf, weil das Magnetfeld die Energieniveaus der elektronischen Zustände beeinflusst und somit die Übergänge zwischen diesen Zuständen verändert. Es gibt zwei Hauptarten des Zeeman-Effekts: den normalen und den anomalem Zeeman-Effekt.
Die mathematische Beschreibung des Zeeman-Effekts kann oft durch die Gleichung
ausgedrückt werden, wobei die Energie im Fehlen des Magnetfeldes, die Bohrsche Magneton, die Stärke des Magnetfeldes und die magnetische Quantenzahl ist. Der Zeeman-Effekt ist nicht nur ein wichtiges Konzept in
Single-Cell Transcriptomics ist eine leistungsstarke Technologie, die es ermöglicht, die Genexpression auf der Ebene einzelner Zellen zu analysieren. Diese Methode unterscheidet sich von traditionellen Ansätzen, bei denen die RNA von Tausenden oder Millionen von Zellen gemischt wird, was zu einem Verlust von Informationen über die Heterogenität innerhalb einer Zellpopulation führt. Mit Single-Cell Transcriptomics können Forscher einzelne Zellen isolieren und deren RNA sequenzieren, um ein detailliertes Profil der Genexpression zu erstellen. Dies ermöglicht es, biologische Prozesse besser zu verstehen, wie z.B. Zellentwicklung, Reaktionen auf Umwelteinflüsse oder Krankheitsmechanismen. Zu den häufigsten Anwendungen gehören die Erforschung von Tumoren, Immunantworten und Stammzellbiologie. Die gesammelten Daten werden häufig mit komplexen Bioinformatik-Methoden analysiert, um Muster und Unterschiede zwischen den Zellen zu identifizieren.
Das Chandrasekhar Limit ist ein fundamentales Konzept in der Astrophysik, das die maximale Masse eines stabilen weißen Zwergsterns beschreibt. Diese Grenze beträgt etwa 1,4 Sonnenmassen (M☉). Wenn ein weißer Zwerg diesen Grenzwert überschreitet, kann er nicht mehr durch den Druck der entarteten Elektronen im Inneren stabilisiert werden und kollabiert unter seiner eigenen Schwerkraft. Dies führt oft zu einer Supernova oder zur Bildung eines Neutronensterns. Die Formel zur Berechnung des Chandrasekhar Limits beinhaltet die relativistischen Effekte und kann vereinfacht als:
dargestellt werden, wobei das reduzierte Plancksche Wirkungsquantum, die Lichtgeschwindigkeit, die Gravitationskonstante und die Elektronenmasse ist. Dieses Limit spielt eine zentrale Rolle im Verständnis der Endstadien der stellaren Evolution.
Neutrino-Oszillation ist ein faszinierendes physikalisches Phänomen, bei dem Neutrinos, die subatomaren Teilchen mit sehr geringer Masse und neutraler Ladung, ihre Identität im Verlauf ihrer Bewegung verändern können. Es gibt drei Haupttypen von Neutrinos: Elektron-, Muon- und Tau-Neutrinos. Wenn ein Neutrino erzeugt wird, hat es eine bestimmte „Flavor“ (Geschmack), doch im Laufe der Zeit kann es in einen anderen Flavor oszillieren. Diese Oszillation wird durch die Tatsache verursacht, dass Neutrinos in einem Überlagerungszustand verschiedener Massenzustände existieren, was mathematisch als eine Kombination von Zuständen beschrieben werden kann:
Hierbei sind die verschiedenen Massenzustände. Die Wahrscheinlichkeit, einen bestimmten Neutrinogeschmack zu messen, ändert sich mit der Zeit und der zurückgelegten Strecke, was durch die Mischungsmatrix beschrieben wird. Neutrino-Oszillation hat bedeutende Implikationen für unser Verständnis der Teilchenphysik und der Materie im Universum, insbesondere für das Phänomen der *Mass
Ein Regelsystem ist ein mathematisches Modell oder eine technische Anordnung, die dazu dient, ein bestimmtes Verhalten eines Systems zu steuern und zu regulieren. Es bestehen zwei Haupttypen: offene und geschlossene Regelkreise. In einem offenen Regelkreis wird die Ausgabe nicht mit der Eingabe verglichen, während in einem geschlossenen Regelkreis die Ausgabe kontinuierlich überwacht und angepasst wird, um die gewünschten Ziele zu erreichen.
Regelsysteme finden Anwendung in vielen Bereichen, wie beispielsweise in der Automatisierungstechnik, der Robotik und der Luftfahrt. Sie nutzen mathematische Modelle, häufig in Form von Differentialgleichungen, um das Verhalten des Systems vorherzusagen und zu steuern. Ein gängiges Ziel ist die Minimierung des Fehlers , definiert als die Differenz zwischen dem gewünschten Sollwert und dem tatsächlichen Istwert :
Durch geeignete Regelstrategien, wie PID-Regelung (Proportional-Integral-Derivat), können Systeme optimiert und stabilisiert werden.
Die Black-Scholes-Formel ist ein fundamentales Modell zur Bewertung von Optionen, das auf bestimmten Annahmen über die Preisbewegungen von Aktien basiert. Die Ableitung beginnt mit der Annahme, dass die Preise von Aktien einem geometrischen Brownians Prozess folgen, was bedeutet, dass die logarithmischen Renditen normalverteilt sind. Der Preis einer europäischen Call-Option kann dann durch die Risiko-Neutralität und die Martingal-Theorie abgeleitet werden.
Um die Option zu bewerten, wird zunächst ein Portfolio aus der Option und der zugrunde liegenden Aktie erstellt, das risikofrei ist. Mithilfe der Itô-Kalkül wird die zeitliche Veränderung des Portfoliowertes betrachtet, was zu einer partiellen differentialgleichung führt. Schließlich ergibt sich die Black-Scholes-Formel, die für eine europäische Call-Option wie folgt aussieht:
Hierbei sind und die Werte der kumulativen Normalverteilung, der aktuelle Aktienkurs, der Ausübungspreis, der risikofreie Zinssatz und $ T-t