StudierendeLehrende

Fano Resonance

Die Fano-Resonanz beschreibt ein Phänomen in der Quantenmechanik und der Festkörperphysik, bei dem die Wechselwirkungen zwischen diskreten Energieniveaus und einem kontinuierlichen Spektrum zu einem charakteristischen asymmetrischen Resonanzprofil führen. Dieses Verhalten tritt oft in Systemen auf, die aus einem gebundenen Zustand (z.B. einem quantenmechanischen Zustand) und einem breiten Kontinuum von Zuständen (z.B. ein Band von Energiezuständen) bestehen.

Ein typisches Beispiel ist die Wechselwirkung zwischen einem einzelnen Atom oder Molekül und einem Photon, das in ein Material eindringt. Die Fano-Resonanz kann mathematisch durch die Fano-Gleichung beschrieben werden, die die Intensität der beobachteten Resonanz als Funktion der Energie darstellt und in der Regel die Form hat:

I(E)=q2(E−E0)2+Γ2+11+(E−E0)/ΓI(E) = \frac{q^2}{(E - E_0)^2 + \Gamma^2} + \frac{1}{1 + (E - E_0)/\Gamma}I(E)=(E−E0​)2+Γ2q2​+1+(E−E0​)/Γ1​

Hierbei steht qqq für das Verhältnis der Kopplungsstärken, E0E_0E0​ ist die Position der Resonanz, und Γ\GammaΓ beschreibt die Breite der Resonanz. Die Bedeutung der Fano-Resonanz liegt in ihrer Fähigkeit, spezifische physikalische Eigenschaften zu erklären, die

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Nyquist-Stabilitätskriterium

Das Nyquist-Stabilitätskriterium ist eine Methode zur Analyse der Stabilität von Regelungssystemen im Frequenzbereich. Es basiert auf der Untersuchung der Übertragungsfunktion G(jω)G(j\omega)G(jω) des Systems, wobei jjj die imaginäre Einheit und ω\omegaω die Frequenz ist. Der Hauptgedanke ist, den Nyquist-Plot, der die Werte von G(jω)G(j\omega)G(jω) für alle Frequenzen ω\omegaω darstellt, zu zeichnen und zu analysieren.

Ein System ist stabil, wenn die Anzahl der Umfassungen des Punktes −1+j0-1 + j0−1+j0 im Nyquist-Plot gleich der Anzahl der rechten Halbwelle der Polstellen von G(s)G(s)G(s) ist. Die Bedingung kann mathematisch durch die Anzahl der encirclements (Umkreisungen) beschrieben werden, die durch die Formel:

N=P−ZN = P - ZN=P−Z

definiert ist, wobei NNN die Anzahl der Umkreisungen um den Punkt −1-1−1, PPP die Anzahl der Pole im rechten Halbebereich und ZZZ die Anzahl der Nullstellen im rechten Halbebereich ist. Dieses Kriterium ist besonders nützlich, um die Stabilität in geschlossenen Regelungssystemen zu bestimmen, ohne die Systemdynamik direkt zu lösen.

Superelastizität in Formgedächtnislegierungen

Superelastizität ist ein faszinierendes Phänomen, das in Formgedächtnislegierungen (Shape-Memory Alloys, SMA) auftritt. Bei diesen Materialien kann eine erhebliche elastische Verformung auftreten, ohne dass plastische Deformationen entstehen. Dies geschieht durch die reversible Umwandlung zwischen zwei Phasen: der martensitischen und der austenitischen Phase. Wenn eine SMA unter Belastung in die martensitische Phase übergeht, kann es bis zu 8 % Dehnung erreichen, bevor es in die ursprüngliche Form zurückkehrt, sobald die Belastung entfernt wird. Dieses Verhalten wird durch die Temperatur und die Zusammensetzung der Legierung beeinflusst, was es ermöglicht, diese Materialien in einer Vielzahl von Anwendungen, von der Medizintechnik bis zur Luft- und Raumfahrt, einzusetzen. Die Fähigkeit, große Verformungen zu ertragen und dennoch in die ursprüngliche Form zurückzukehren, macht Superelastizität besonders wertvoll in technischen Anwendungen.

Stark-Effekt

Der Stark-Effekt beschreibt die Veränderung der Energielevels von Atomen oder Molekülen, wenn sie in ein starkes elektrisches Feld gebracht werden. Diese Wechselwirkung führt zu einer Aufspaltung der Energieniveaus, was bedeutet, dass die Spektrallinien, die normalerweise scharf und klar sind, breiter und verschobener erscheinen. Der Effekt kann in zwei Hauptkategorien unterteilt werden: den linear und den quadratischen Stark-Effekt, abhängig von der Stärke des elektrischen Feldes und der spezifischen Energieänderung.

Mathematisch kann die Energieverschiebung durch das elektrische Feld EEE beschrieben werden als:

ΔE=−12αE2\Delta E = -\frac{1}{2} \alpha E^2ΔE=−21​αE2

wobei α\alphaα die Polarisierbarkeit des Atoms oder Moleküls ist. Der Stark-Effekt hat bedeutende Anwendungen in verschiedenen Bereichen, wie z.B. in der Spektroskopie und der Quantenmechanik, da er hilft, die Struktur von Atomen und Molekülen besser zu verstehen.

Gini-Koeffizient

Der Gini-Koeffizient ist ein Maß für die Einkommens- oder Vermögensverteilung innerhalb einer Bevölkerung und wird häufig verwendet, um die Ungleichheit in einer Gesellschaft zu quantifizieren. Er variiert zwischen 0 und 1, wobei 0 vollständige Gleichheit darstellt (alle haben das gleiche Einkommen) und 1 vollständige Ungleichheit (eine Person hat das gesamte Einkommen, während alle anderen nichts haben). Mathematisch wird der Gini-Koeffizient aus der Lorenz-Kurve abgeleitet, die die kumulierte Einkommensverteilung darstellt. Der Gini-Koeffizient kann auch als Verhältnis der Fläche zwischen der Lorenz-Kurve und der Gleichheitslinie zur gesamten Fläche unter der Gleichheitslinie dargestellt werden:

G=AA+BG = \frac{A}{A + B}G=A+BA​

Hierbei ist AAA die Fläche zwischen der Gleichheitslinie und der Lorenz-Kurve, während BBB die Fläche unter der Lorenz-Kurve darstellt. Ein niedriger Gini-Koeffizient deutet auf eine gerechtere Einkommensverteilung hin, während ein hoher Koeffizient auf eine größere Ungleichheit hinweist.

LQR-Regler

Ein LQR-Controller (Linear-Quadratic Regulator) ist ein optimales Steuerungssystem, das häufig in der Regelungstechnik verwendet wird, um die Leistung eines dynamischen Systems zu verbessern. Er basiert auf der Minimierung einer Kostenfunktion, die typischerweise die quadratischen Abweichungen von den gewünschten Zuständen und den Steueraufwand berücksichtigt. Mathematisch wird dies durch die Kostenfunktion

J=∫0∞(xTQx+uTRu) dtJ = \int_0^{\infty} (x^T Q x + u^T R u) \, dtJ=∫0∞​(xTQx+uTRu)dt

definiert, wobei xxx der Zustand des Systems, uuu das Steuerungssignal, QQQ eine Gewichtungsmatrix für die Zustände und RRR eine Gewichtungsmatrix für die Steuerung ist. Der LQR-Controller berechnet die optimale Steuerstrategie, indem er die Rückführung des Zustands u=−Kxu = -Kxu=−Kx mit einer Matrix KKK verwendet, die aus den Lösungen der algebraischen Riccati-Gleichung abgeleitet wird. Diese Methode ermöglicht es, sowohl die Effizienz als auch die Stabilität des Systems zu gewährleisten und findet Anwendung in verschiedenen Bereichen wie Robotik, Automatisierung und Fahrzeugsteuerung.

Panelregression

Panel Regression ist eine statistische Methode, die sowohl querschnittliche als auch zeitliche Daten kombiniert. Sie ermöglicht es, die Dynamik von Variablen über Zeit und zwischen Individuen oder Gruppen zu analysieren. Ein häufiges Ziel der Panel Regression ist es, Effekte zu schätzen, die durch unbeobachtete Heterogenität entstehen können, indem sowohl individuelle als auch zeitliche Effekte berücksichtigt werden. Es gibt verschiedene Ansätze zur Durchführung von Panel Regression, darunter das fixed effects- und random effects-Modell. Das fixed effects-Modell kontrolliert für unbeobachtete Variablen, die konstant sind, während das random effects-Modell davon ausgeht, dass diese unbeobachteten Variablen zufällig sind und nicht mit den erklärenden Variablen korrelieren. Ein Beispiel für die Anwendung wäre die Analyse des Einflusses von Bildung auf das Einkommen über verschiedene Jahre und verschiedene Personen hinweg.