StudierendeLehrende

Black-Scholes Option Pricing Derivation

Die Black-Scholes-Formel ist ein fundamentales Modell zur Bewertung von Optionen, das auf bestimmten Annahmen über die Preisbewegungen von Aktien basiert. Die Ableitung beginnt mit der Annahme, dass die Preise von Aktien einem geometrischen Brownians Prozess folgen, was bedeutet, dass die logarithmischen Renditen normalverteilt sind. Der Preis einer europäischen Call-Option kann dann durch die Risiko-Neutralität und die Martingal-Theorie abgeleitet werden.

Um die Option zu bewerten, wird zunächst ein Portfolio aus der Option und der zugrunde liegenden Aktie erstellt, das risikofrei ist. Mithilfe der Itô-Kalkül wird die zeitliche Veränderung des Portfoliowertes betrachtet, was zu einer partiellen differentialgleichung führt. Schließlich ergibt sich die Black-Scholes-Formel, die für eine europäische Call-Option wie folgt aussieht:

C(S,t)=SN(d1)−Ke−r(T−t)N(d2)C(S, t) = S N(d_1) - K e^{-r(T-t)} N(d_2)C(S,t)=SN(d1​)−Ke−r(T−t)N(d2​)

Hierbei sind N(d1)N(d_1)N(d1​) und N(d2)N(d_2)N(d2​) die Werte der kumulativen Normalverteilung, SSS der aktuelle Aktienkurs, KKK der Ausübungspreis, rrr der risikofreie Zinssatz und $ T-t

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Cholesky-Zerlegung

Die Cholesky-Zerlegung ist eine mathematische Methode zur Zerlegung einer positiv definiten Matrix AAA in das Produkt einer unteren Dreiecksmatrix LLL und ihrer Transponierten LTL^TLT. Dies wird dargestellt als:

A=LLTA = LL^TA=LLT

Diese Zerlegung ist besonders nützlich in der numerischen Mathematik, da sie die Lösung von Gleichungssystemen der Form Ax=bAx = bAx=b vereinfacht. Anstatt die Matrix AAA direkt zu invertieren, kann man zuerst die Gleichung in zwei Schritte zerlegen: Ly=bLy = bLy=b und danach LTx=yL^T x = yLTx=y. Die Cholesky-Zerlegung ist effizienter als andere Methoden, wie die LU-Zerlegung, insbesondere für große Matrizen. Zudem reduziert sie die Rechenzeit und den Speicherbedarf, was sie zu einem wertvollen Werkzeug in der Statistik, Optimierung und maschinellem Lernen macht.

GAN-Modus-Kollaps

Der Mode Collapse ist ein häufiges Problem bei Generative Adversarial Networks (GANs), bei dem das Modell lernt, nur eine begrenzte Anzahl von Ausgaben oder sogar nur eine einzige Art von Ausgabe zu erzeugen, anstatt die gesamte Vielfalt der möglichen Daten zu erfassen. Dies geschieht, wenn der Generator in einem starren Muster operiert, was bedeutet, dass er bei jeder Generierung ähnliche oder identische Ergebnisse produziert.

Ein Beispiel hierfür könnte ein GAN sein, das Bilder von Ziffern generiert und dabei nur die Ziffer "3" erzeugt, obwohl es hätte lernen sollen, Ziffern von 0 bis 9 zu generieren. Die Ursachen für Mode Collapse können vielfältig sein, einschließlich:

  • Ungleichgewicht im Training: Der Diskriminator könnte zu stark werden und den Generator dazu zwingen, sich auf eine einfache Lösung zu konzentrieren.
  • Fehlende Vielfalt in den Trainingsdaten: Wenn die Trainingsdaten nicht vielfältig genug sind, kann der Generator gezwungen werden, sich auf die häufigsten Muster zu konzentrieren.
  • Architekturelle Einschränkungen: Die Struktur des Netzwerks kann die Fähigkeit des Generators einschränken, unterschiedliche Moden zu erzeugen.

Um dieses Problem zu bekämpfen, können Techniken wie Mini-Batch-Statistiken, Mode-Seeking oder die Verwendung von **verschiedenen Verlust

Sharpe-Ratio

Die Sharpe Ratio ist eine Kennzahl, die verwendet wird, um die Rendite eines Investments im Verhältnis zu seinem Risiko zu bewerten. Sie wird berechnet, indem die Überrendite eines Portfolios (d.h. die Rendite über den risikofreien Zinssatz hinaus) durch die Standardabweichung der Renditen des Portfolios geteilt wird. Die Formel lautet:

S=Rp−RfσpS = \frac{R_p - R_f}{\sigma_p}S=σp​Rp​−Rf​​

Hierbei ist SSS die Sharpe Ratio, RpR_pRp​ die Rendite des Portfolios, RfR_fRf​ der risikofreie Zinssatz und σp\sigma_pσp​ die Standardabweichung der Portfolio-Renditen. Eine höhere Sharpe Ratio deutet darauf hin, dass das Investment im Verhältnis zu seinem Risiko eine bessere Rendite erzielt. Im Allgemeinen wird eine Sharpe Ratio von über 1 als gut angesehen, während Werte über 2 als sehr gut gelten.

Bessel-Funktionen

Bessel-Funktionen sind eine Familie von Lösungen zu Bessels Differentialgleichung, die häufig in verschiedenen Bereichen der Physik und Ingenieurwissenschaften auftreten, insbesondere in Problemen mit zylindrischer Symmetrie. Diese Funktionen werden typischerweise durch die Beziehung definiert:

x2d2ydx2+xdydx+(x2−n2)y=0x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0x2dx2d2y​+xdxdy​+(x2−n2)y=0

wobei nnn eine Konstante ist, die die Ordnung der Bessel-Funktion bestimmt. Die am häufigsten verwendeten Bessel-Funktionen sind die ersten und zweiten Arten, bezeichnet als Jn(x)J_n(x)Jn​(x) und Yn(x)Y_n(x)Yn​(x). Bessel-Funktionen finden Anwendung in vielen Bereichen wie der Akustik, Elektromagnetik und Wärmeleitung, da sie die physikalischen Eigenschaften von Wellen und Schwingungen in zylindrischen Koordinatensystemen beschreiben. Ihre Eigenschaften, wie Orthogonalität und die Möglichkeit, durch Reihenentwicklungen dargestellt zu werden, machen sie zu einem wichtigen Werkzeug in der mathematischen Physik.

Superkondensator-Ladungsspeicherung

Superkondensatoren, auch bekannt als ultrakondensatoren, sind Energiespeichergeräte, die elektrische Energie durch die Trennung von Ladungen in einem elektrischen Feld speichern. Im Gegensatz zu herkömmlichen Batterien, die chemische Reaktionen zur Energiespeicherung nutzen, basieren Superkondensatoren auf elektrochemischen Doppel-Schicht-Kondensatoren (EDLCs), die es ermöglichen, hohe Energiedichten und sehr schnelle Lade- und Entladezyklen zu erreichen.

Die Speicherkapazität eines Superkondensators wird durch die Formel C=εAdC = \frac{\varepsilon A}{d}C=dεA​ beschrieben, wobei CCC die Kapazität, ε\varepsilonε die Dielektrizitätskonstante, AAA die Fläche der Elektroden und ddd der Abstand zwischen den Elektroden ist. Diese Eigenschaften machen Superkondensatoren besonders nützlich in Anwendungen, die schnelle Energieabgaben erfordern, wie z.B. bei Hybridfahrzeugen oder in der Energierückgewinnung. Darüber hinaus haben sie eine hohe Lebensdauer und sind umweltfreundlicher als herkömmliche Batterien, was sie zu einer vielversprechenden Technologie für die zukünftige Energieversorgung macht.

MEMS-Gyroskop-Arbeitsprinzip

Ein MEMS-Gyroskop (Micro-Electro-Mechanical Systems) funktioniert auf der Grundlage der Prinzipien der Rotation und Bewegung. Es nutzt die Corioliskraft, um Drehbewegungen zu messen. Im Inneren des Gyroskops befinden sich winzige, bewegliche Komponenten, die durch elektrische Signale angeregt werden. Wenn sich das Gyroskop dreht, bewirken die Corioliskräfte, dass sich diese Komponenten in einer bestimmten Richtung bewegen, was als Veränderung ihrer Position oder Geschwindigkeit gemessen wird.

Diese Veränderungen werden in elektrische Signale umgewandelt, die dann analysiert werden, um die Drehgeschwindigkeit und die Richtung zu bestimmen. Der grundlegende mathematische Zusammenhang, der dabei verwendet wird, ist die Beziehung zwischen dem Drehwinkel θ\thetaθ, der Zeit ttt und der Winkelgeschwindigkeit ω\omegaω, gegeben durch die Gleichung:

ω=dθdt\omega = \frac{d\theta}{dt}ω=dtdθ​

Durch die präzise Erfassung dieser Daten können MEMS-Gyroskope in verschiedenen Anwendungen, wie z.B. in Smartphones, Drohnen oder Automobilen, eingesetzt werden, um die Orientierung und Bewegung zu stabilisieren und zu steuern.