StudierendeLehrende

Fermat Theorem

Das Fermatsche Theorem bezieht sich auf die berühmte Aussage von Pierre de Fermat, die besagt, dass es keine drei positiven ganzen Zahlen aaa, bbb und ccc gibt, die die Gleichung an+bn=cna^n + b^n = c^nan+bn=cn für n>2n > 2n>2 erfüllen. Diese Behauptung wurde erstmals 1637 formuliert und ist bekannt für den zugehörigen Satz, dass Fermat in den Rand eines Buches schrieb, dass er einen "wunderbaren Beweis" dafür gefunden habe, aber der Rand nicht ausreiche, um ihn niederzuschreiben. Der Satz blieb über 350 Jahre lang unbewiesen, bis Andrew Wiles 1994 einen vollständigen Beweis lieferte. Dieser Beweis nutzt moderne mathematische Techniken, insbesondere die Theorie der elliptischen Kurven und modulare Formen. Das Fermatsche Theorem ist ein Meilenstein in der Zahlentheorie und hat bedeutende Auswirkungen auf die Mathematik und deren Teilgebiete.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Perron-Frobenius-Eigenwertsatz

Das Perron-Frobenius-Eigenwerttheorem befasst sich mit nicht-negativen Matrizen und deren Eigenwerten und -vektoren. Es besagt, dass eine nicht-negative quadratische Matrix AAA einen eindeutigen größten Eigenwert hat, der echt positiv ist, und dass der zugehörige Eigenvektor ebenfalls echt positiv ist. Dieses Theorem hat weitreichende Anwendungen in verschiedenen Bereichen, wie z.B. der Ökonomie, der Populationsdynamik und der Markov-Ketten.

Darüber hinaus garantiert das Theorem, dass, wenn die Matrix irreduzibel ist (d.h. es gibt einen Weg zwischen jedem Paar von Zuständen), der größte Eigenwert λ\lambdaλ der Matrix AAA auch der dominierende Eigenwert ist, was bedeutet, dass alle anderen Eigenwerte in Betrag kleiner sind als λ\lambdaλ. Dies bietet eine wertvolle Grundlage für die Analyse dynamischer Systeme und die Stabilität von Gleichgewichtszuständen.

Lastflussanalyse

Die Load Flow Analysis (Lastflussanalyse) ist ein fundamentales Verfahren in der Elektrotechnik, das verwendet wird, um den Energiefluss in elektrischen Netzwerken zu berechnen. Ziel ist es, Spannungen, Ströme und Verluste in einem System unter verschiedenen Betriebsbedingungen zu bestimmen. Diese Analyse hilft Ingenieuren, die Stabilität, Effizienz und Zuverlässigkeit von Energieversorgungsnetzen zu bewerten.

Die grundlegenden Gleichungen, die in der Lastflussanalyse verwendet werden, basieren auf dem Ohmschen Gesetz und Kirchhoffschen Regeln. Die wichtigsten Parameter sind:

  • Spannung (VVV)
  • Strom (III)
  • Leistung (PPP und QQQ für aktive und reaktive Leistung)

Die Lastflussanalyse wird häufig mit numerischen Methoden wie dem Newton-Raphson-Verfahren oder Gauss-Seidel-Verfahren durchgeführt, um die Gleichgewichtszustände des Systems zu bestimmen.

Saysches Gesetz der Märkte

Das Say's Law of Markets, benannt nach dem französischen Ökonomen Jean-Baptiste Say, besagt, dass das Angebot seine eigene Nachfrage schafft. Dies bedeutet, dass die Produktion von Waren und Dienstleistungen automatisch einen Bedarf nach diesen schafft, da die Produzenten Einkommen generieren, das sie dann für den Kauf anderer Güter verwenden. Say argumentierte, dass in einer freien Marktwirtschaft Überproduktion oder Mangel an Nachfrage nicht dauerhaft bestehen können, da die Schaffung von Gütern immer den Kauf von anderen Gütern nach sich zieht.

Ein zentrales Element dieser Theorie ist die Idee, dass alle Einnahmen aus der Produktion entweder in Form von Löhnen, Mieten oder Gewinnen wieder in den Wirtschaftskreislauf zurückfließen. Diese Sichtweise steht im Gegensatz zu keynesianischen Konzepten, die betonen, dass die Nachfrage entscheidend für die wirtschaftliche Aktivität ist. Zusammenfassend lässt sich sagen, dass Say's Law die Bedeutung der Produktion und des Angebots in der Schaffung wirtschaftlicher Nachfrage hervorhebt.

Simrank Link Prediction

SimRank ist ein Maß zur Quantifizierung der Ähnlichkeit zwischen Knoten in einem Netzwerk, basierend auf der Struktur und den Verbindungen des Graphen. Es wurde entwickelt, um Vorhersagen darüber zu treffen, wie wahrscheinlich es ist, dass zwei Knoten in der Zukunft miteinander verbunden sind. Der Grundsatz hinter SimRank lautet: "Ähnliche Objekte sind diejenigen, die ähnliche Objekte haben." Dies bedeutet, dass die Ähnlichkeit zwischen zwei Knoten aaa und bbb durch die Ähnlichkeit ihrer Nachbarn bestimmt wird.

Mathematisch wird dies oft durch die folgende rekursive Gleichung dargestellt:

S(a,b)=C∣N(a)∣⋅∣N(b)∣∑x∈N(a)∑y∈N(b)S(x,y)S(a, b) = \frac{C}{|N(a)| \cdot |N(b)|} \sum_{x \in N(a)} \sum_{y \in N(b)} S(x, y)S(a,b)=∣N(a)∣⋅∣N(b)∣C​x∈N(a)∑​y∈N(b)∑​S(x,y)

Hierbei ist S(a,b)S(a, b)S(a,b) die SimRank-Ähnlichkeit zwischen den Knoten aaa und bbb, CCC ist eine Konstante, und N(x)N(x)N(x) bezeichnet die Nachbarknoten von xxx. SimRank findet Anwendung in verschiedenen Bereichen wie sozialen Netzwerken, Empfehlungssystemen und biologischen Netzwerken, um potenzielle Verbindungen oder Interaktionen vorherzusagen.

Perron-Frobenius

Der Perron-Frobenius-Satz ist ein zentrales Resultat in der linearen Algebra, das sich mit den Eigenwerten und Eigenvektoren von nicht-negativen Matrizen beschäftigt. Er besagt, dass eine irreduzible, nicht-negative Matrix einen einzigartigen größten Eigenwert hat, der positiv ist, und dass der zugehörige Eigenvektor ebenfalls positive Komponenten besitzt. Dies ist besonders wichtig in verschiedenen Anwendungen, wie zum Beispiel in der Wirtschaft, wo Wachstumsmodelle oder Markov-Ketten analysiert werden.

Die grundlegenden Voraussetzungen für den Satz sind, dass die Matrix irreduzibel (d.h. es gibt keinen Weg, um von einem Zustand zu einem anderen zu gelangen) und nicht-negativ (alle Elemente sind ≥ 0) ist. Der größte Eigenwert λ\lambdaλ und der zugehörige Eigenvektor vvv erfüllen dann die Gleichung:

Av=λvA v = \lambda vAv=λv

Hierbei ist AAA die betreffende Matrix. Die Konzepte aus dem Perron-Frobenius-Satz sind nicht nur theoretisch von Bedeutung, sondern finden auch praktische Anwendungen in der Wirtschaft, Biologie und anderen Disziplinen, in denen Systeme dynamisch und vernetzt sind.

Regelungssysteme

Ein Regelsystem ist ein mathematisches Modell oder eine technische Anordnung, die dazu dient, ein bestimmtes Verhalten eines Systems zu steuern und zu regulieren. Es bestehen zwei Haupttypen: offene und geschlossene Regelkreise. In einem offenen Regelkreis wird die Ausgabe nicht mit der Eingabe verglichen, während in einem geschlossenen Regelkreis die Ausgabe kontinuierlich überwacht und angepasst wird, um die gewünschten Ziele zu erreichen.

Regelsysteme finden Anwendung in vielen Bereichen, wie beispielsweise in der Automatisierungstechnik, der Robotik und der Luftfahrt. Sie nutzen mathematische Modelle, häufig in Form von Differentialgleichungen, um das Verhalten des Systems vorherzusagen und zu steuern. Ein gängiges Ziel ist die Minimierung des Fehlers e(t)e(t)e(t), definiert als die Differenz zwischen dem gewünschten Sollwert r(t)r(t)r(t) und dem tatsächlichen Istwert y(t)y(t)y(t):

e(t)=r(t)−y(t)e(t) = r(t) - y(t)e(t)=r(t)−y(t)

Durch geeignete Regelstrategien, wie PID-Regelung (Proportional-Integral-Derivat), können Systeme optimiert und stabilisiert werden.