StudierendeLehrende

Kalman Filter Optimal Estimation

Der Kalman-Filter ist ein rekursives Schätzverfahren, das zur optimalen Schätzung des Zustands eines dynamischen Systems verwendet wird, welches durch Rauschen und Unsicherheiten beeinflusst wird. Er kombiniert Messungen, die mit Unsicherheiten behaftet sind, mit einem mathematischen Modell des Systems, um eine verbesserte Schätzung des Zustands zu liefern. Der Filter basiert auf zwei Hauptschritten:

  1. Vorhersage: Hierbei wird der aktuelle Zustand des Systems auf der Grundlage des vorherigen Zustands und des Systemmodells geschätzt.
  2. Korrektur: In diesem Schritt wird die Vorhersage mit den neuen Messungen kombiniert, um die Schätzung zu aktualisieren.

Die mathematische Darstellung des Kalman-Filters beinhaltet die Verwendung von Zustandsvektoren xxx, Messrauschen vvv und Prozessrauschen www. Der Filter ist besonders nützlich in Anwendungen wie der Navigation, der Robotik und der Signalverarbeitung, da er eine effiziente und präzise Möglichkeit bietet, aus verrauschten Messdaten sinnvolle Informationen zu extrahieren.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Wachstumstheorien

Wachstumstheorien in der Wirtschaft erklären, wie und warum Volkswirtschaften über Zeit wachsen. Die klassische Wachstumstheorie, vertreten durch Ökonomen wie Adam Smith, betont die Rolle von Kapitalakkumulation und Arbeitsteilung. Im Gegensatz dazu fokussiert die neoklassische Wachstumstheorie, insbesondere das Solow-Modell, auf technologische Fortschritte und die Bedeutung von Faktoren wie Humankapital. Eine weitere bedeutende Theorie ist die endogene Wachstumstheorie, die darauf hinweist, dass das Wachstum aus dem wirtschaftlichen Umfeld selbst entstehen kann, insbesondere durch Innovationen und Wissensschaffung. Diese Theorien verwenden oft mathematische Modelle, um das Wachstum mathematisch zu beschreiben, wobei eine gängige Gleichung die Produktionsfunktion darstellt:

Y=F(K,L,A)Y = F(K, L, A)Y=F(K,L,A)

Hierbei steht YYY für das Bruttoinlandsprodukt, KKK für Kapital, LLL für Arbeit und AAA für technologische Effizienz.

Michelson-Morley

Das Michelson-Morley-Experiment, durchgeführt von Albert A. Michelson und Edward W. Morley im Jahr 1887, hatte das Ziel, die Existenz des Äthers zu testen, einem hypothetischen Medium, durch das Lichtwellen sich ausbreiten sollten. Die Forscher verwendeten einen Interferometer, das es ihnen ermöglichte, die Unterschiede in der Lichtgeschwindigkeit in zwei senkrecht zueinander stehenden Strahlen zu messen. Sie erwarteten, dass die Bewegung der Erde durch den Äther eine Veränderung der Lichtgeschwindigkeit bewirken würde, was sich in einem messbaren Interferenzmuster zeigen sollte. Allerdings ergab das Experiment, dass es keinen signifikanten Unterschied in der Lichtgeschwindigkeit gab, was zu der Schlussfolgerung führte, dass der Äther nicht existiert. Dieses Ergebnis war entscheidend für die Entwicklung der Spezialtheorie der Relativität, die das klassische Konzept des Äthers überflüssig machte und die Vorstellung von Raum und Zeit revolutionierte. Das Experiment bleibt ein grundlegendes Beispiel für die wissenschaftliche Methode und die Überprüfung von Hypothesen.

Wirtschaftliche Auswirkungen des Klimawandels

Der wirtschaftliche Einfluss des Klimawandels ist weitreichend und betrifft nahezu alle Sektoren der Wirtschaft. Extreme Wetterereignisse, wie Überschwemmungen und Dürren, führen zu erheblichen Schäden an Infrastruktur und Landwirtschaft, was wiederum die Produktionskosten erhöht und die Erträge mindert. Zudem verursacht der Klimawandel eine Zunahme von Gesundheitsrisiken, die zusätzliche Ausgaben im Gesundheitswesen nach sich ziehen.

Die Anpassung an den Klimawandel erfordert erhebliche Investitionen in Technologien und Infrastrukturen, um die Widerstandsfähigkeit gegenüber klimabedingten Herausforderungen zu erhöhen. Langfristig wird prognostiziert, dass die wirtschaftlichen Kosten des Klimawandels, wenn keine Maßnahmen ergriffen werden, in den kommenden Jahrzehnten in die Billionen gehen könnten. Zum Beispiel könnte der globale Verlust an Wirtschaftsleistung bis 2100 bis zu 23 Billionen USD23 \, \text{Billionen USD}23Billionen USD betragen, wenn die Erderwärmung auf über 2 °C ansteigt.

Lazy Propagation Segment Tree

Ein Lazy Propagation Segment Tree ist eine Datenstruktur, die verwendet wird, um effizient mit Berechnungen in einem Bereich von Daten umzugehen, insbesondere bei häufigen Aktualisierungen und Abfragen. Sie kombiniert die Vorteile von Segmentbäumen mit einer Technik namens "Lazy Propagation", um die Zeitkomplexität von Aktualisierungen zu reduzieren. Anstatt sofort alle Knoten zu aktualisieren, speichert die Struktur Informationen über die ausstehenden Aktualisierungen und wendet diese nur dann an, wenn sie wirklich benötigt werden.

Die Grundidee ist, dass, wenn eine Aktualisierung auf einen Bereich [l,r][l, r][l,r] angewendet wird, wir nur die Wurzel des Segmentbaums und die entsprechenden Lazy-Werte aktualisieren, anstatt die gesamten betroffenen Segmente sofort zu ändern. Bei einer Abfrage muss der Baum dann sicherstellen, dass alle ausstehenden Änderungen angewendet werden, bevor das Ergebnis zurückgegeben wird. Diese Technik führt zu einer erheblichen Reduzierung der Rechenzeit bei großen Datenmengen, da die Zeitkomplexität für Aktualisierungen und Abfragen auf O(log⁡n)O(\log n)O(logn) sinkt.

Perowskit-Photovoltaik-Stabilität

Die Stabilität von Perowskit-Photovoltaikmodulen ist ein zentrales Forschungsthema, da diese Materialien vielversprechende Effizienzwerte bei der Umwandlung von Sonnenlicht in elektrische Energie bieten. Perowskite sind eine Klasse von Materialien mit einer speziellen kristallinen Struktur, die oft in der Form ABX3 vorkommen, wobei A und B Kationen und X Anionen sind. Eines der größten Herausforderungen ist jedoch die Umweltanfälligkeit dieser Materialien, die sie durch Faktoren wie Feuchtigkeit, Temperatur und Licht degradiert. Um die Stabilität zu erhöhen, werden verschiedene Strategien verfolgt, wie z.B. die Verwendung von stabileren chemischen Zusammensetzungen, das Hinzufügen von Schutzschichten oder die Optimierung der Herstellungsprozesse. Eine hohe Stabilität ist entscheidend, um die Lebensdauer der Module zu verlängern und ihre kommerzielle Anwendbarkeit zu gewährleisten. Derzeit wird intensiv geforscht, um die Stabilität von Perowskit-Solarzellen auf mehrere Jahre oder sogar Jahrzehnte zu verbessern.

Implizites Runge-Kutta

Der implizite Runge-Kutta-Algorithmus ist eine erweiterte Methode zur Lösung von gewöhnlichen Differentialgleichungen, die besonders vorteilhaft ist, wenn es um steife Probleme geht. Im Gegensatz zu expliziten Methoden, bei denen der nächste Schritt direkt aus den bekannten Werten berechnet wird, erfordert die implizite Methode die Lösung eines Gleichungssystems, das die Unbekannten des nächsten Schrittes enthält.

Die allgemeine Form einer impliziten Runge-Kutta-Methode kann durch folgende Gleichungen dargestellt werden:

yn+1=yn+h∑i=1sbikiy_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_iyn+1​=yn​+hi=1∑s​bi​ki​ ki=f(tn+cih,yn+h∑j=1iaijkj)k_i = f(t_n + c_i h, y_n + h \sum_{j=1}^{i} a_{ij} k_j)ki​=f(tn​+ci​h,yn​+hj=1∑i​aij​kj​)

Hierbei sind hhh die Schrittweite, kik_iki​ die Stützwerte und aij,bi,cia_{ij}, b_i, c_iaij​,bi​,ci​ die Butcher-Tabelle Parameter, die die Methode definieren. Der Hauptvorteil dieser Methoden liegt in ihrer Fähigkeit, stabilere Lösungen für Probleme zu bieten, die schnelle Änderungen oder große Unterschiede in den Skalen aufweisen. Daher sind sie besonders nützlich in der Ingenieurwissenschaft und Physik, wo steife Differentialgleichungen häufig auftreten.