StudierendeLehrende

Ferroelectric Domains

Ferroelectric Domains sind spezifische Bereiche in ferroelectricen Materialien, in denen die elektrische Polarisation einheitlich ausgerichtet ist. Diese Polarisation entsteht durch die Anordnung der dipolaren Moleküle im Kristallgitter, die sich unter dem Einfluss eines elektrischen Feldes orientieren. Innerhalb eines einzelnen Domain ist die Polarisation konstant, jedoch kann sie sich in benachbarten Domains in verschiedene Richtungen ausrichten, was zu einer Domänenstruktur führt. Diese Struktur ist entscheidend für die Eigenschaften von ferroelectricen Materialien, einschließlich ihrer Verwendung in Speichermedien, Sensoren und Aktuatoren. Die Umwandlung zwischen verschiedenen Domänen kann durch äußere elektrische Felder, Temperaturänderungen oder mechanische Spannungen beeinflusst werden, was ihre Anwendbarkeit in modernen Technologien weiter erhöht.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Cantors Diagonalargument

Das Cantor’sche Diagonalargument ist ein fundamentales Ergebnis in der Mengenlehre, das zeigt, dass die Menge der reellen Zahlen nicht abzählbar ist. Cantor begann mit der Annahme, dass alle reellen Zahlen im Intervall [0,1][0, 1][0,1] in einer Liste aufgeführt werden könnten. Um zu zeigen, dass dies nicht möglich ist, konstruierte er eine neue reelle Zahl, die von der ersten Zahl in der Liste an der ersten Stelle, von der zweiten Zahl an der zweiten Stelle und so weiter abweicht. Diese neu konstruierte Zahl unterscheidet sich also in jeder Dezimalstelle von jeder Zahl in der Liste, was bedeutet, dass sie nicht in der Liste enthalten sein kann. Damit wird bewiesen, dass es mehr reelle Zahlen als natürliche Zahlen gibt, was die Nicht-Abzählbarkeit der reellen Zahlen demonstriert. Dieses Argument hat tiefgreifende Konsequenzen für unser Verständnis von Unendlichkeit und die Struktur der Zahlen.

Bayessche Netze

Bayesian Networks sind grafische Modelle, die zur Darstellung von Wahrscheinlichkeitsbeziehungen zwischen Variablen verwendet werden. Sie bestehen aus Knoten, die Variablen repräsentieren, und gerichteten Kanten, die die Abhängigkeiten zwischen diesen Variablen anzeigen. Ein wichtiges Konzept in Bayesian Networks ist die bedingte Wahrscheinlichkeit, die angibt, wie die Wahrscheinlichkeit einer Variablen von anderen abhängt. Mathematisch wird dies oft mit der Notation P(A∣B)P(A | B)P(A∣B) dargestellt, wobei AAA die abhängige und BBB die bedingende Variable ist.

Die Struktur eines Bayesian Networks ermöglicht es, komplexe Probleme zu modellieren und zu analysieren, indem sie sowohl die Unsicherheiten als auch die Beziehungen zwischen den Variablen berücksichtigt. Sie finden Anwendung in verschiedenen Bereichen, wie z.B. in der Medizin zur Diagnose von Krankheiten, in der Finanzwirtschaft für Risikobewertungen oder in der künstlichen Intelligenz für Entscheidungsfindungsprozesse.

Ferroelectric-Hochschichtdünnfilme

Ferroelectric Thin Films sind dünne Schichten von ferroelectricen Materialien, die eine spontane Polarisation aufweisen, die umkehrbar ist. Diese Materialien sind charakterisiert durch ihre Fähigkeit, die elektrische Polarisation in Abhängigkeit von einem externen elektrischen Feld zu ändern, was sie für Anwendungen in der Speichertechnologie, Sensorik und Aktuatorik besonders interessant macht. Die Herstellung dieser Filme erfolgt häufig durch Techniken wie Molekularstrahlepitaxie oder Sputtern, um eine präzise Kontrolle über die Schichtdicke und -qualität zu gewährleisten.

Die Eigenschaften von ferroelectricen Dünnschichten sind stark von ihrer Struktur und Morphologie abhängig. Beispielsweise kann die Kristallstruktur durch die Substratmaterialien und Wachstumsbedingungen beeinflusst werden, was zu unterschiedlichen elektrischen Eigenschaften führt. Zudem ermöglicht die Kombination von Ferroelectricität mit anderen Funktionalitäten, wie in Multifunktionalen Materialien, innovative Anwendungen in der Nanoelektronik und der Energieumwandlung.

Mikroökonomische Elastizität

Die Mikroökonomie beschäftigt sich mit dem Verhalten von Einzelpersonen und Unternehmen in Bezug auf die Zuteilung von Ressourcen und die Erstellung von Gütern und Dienstleistungen. Ein zentrales Konzept in der Mikroökonomie ist die Elastizität, die misst, wie empfindlich die Nachfrage oder das Angebot eines Gutes auf Änderungen von Preis oder Einkommen reagiert. Es gibt verschiedene Arten von Elastizitäten, wobei die Preis-Elastizität der Nachfrage und die Preis-Elastizität des Angebots die bekanntesten sind.

Die Preis-Elastizität der Nachfrage wird definiert als:

Ed=% A¨nderung der Nachfragemenge% A¨nderung des PreisesE_d = \frac{\%\ \text{Änderung der Nachfragemenge}}{\%\ \text{Änderung des Preises}}Ed​=% A¨nderung des Preises% A¨nderung der Nachfragemenge​

Eine Elastizität größer als 1 zeigt an, dass die Nachfrage elastisch ist, d.h., die Konsumenten reagieren stark auf Preisänderungen. Im Gegensatz dazu zeigt eine Elastizität kleiner als 1, dass die Nachfrage unelastisch ist, was bedeutet, dass die Konsumenten weniger empfindlich auf Preisänderungen reagieren. Die Analyse der Elastizität ist entscheidend für Unternehmen, um Preisstrategien zu entwickeln und den Umsatz zu maximieren.

Turing-Reduktion

Die Turing-Reduktion ist ein Konzept aus der theoretischen Informatik, das sich mit der Beziehung zwischen verschiedenen Entscheidungsproblemen beschäftigt. Sie beschreibt, wie man ein Problem AAA auf ein anderes Problem BBB reduzieren kann, indem man eine hypothetische Turing-Maschine nutzt, die die Lösung von BBB als Unterprozedur aufruft. Wenn eine Turing-Maschine in der Lage ist, das Problem AAA zu lösen, indem sie eine endliche Anzahl von Aufrufen an eine Turing-Maschine, die BBB löst, sendet, sagen wir, dass AAA Turing-reduzierbar auf BBB ist, was wir als A≤TBA \leq_T BA≤T​B notieren. Diese Art der Reduktion ist besonders wichtig für die Klassifikation von Problemen hinsichtlich ihrer Berechenbarkeit und Komplexität. Ein klassisches Beispiel ist die Reduktion des Halteproblems, das zeigt, dass viele andere Probleme ebenfalls unlösbar sind.

Ricardianische Äquivalenz

Die Ricardian Equivalence ist ein wirtschaftliches Konzept, das von dem britischen Ökonomen David Ricardo im 19. Jahrhundert formuliert wurde. Es besagt, dass die Art und Weise, wie Regierungen ihre Ausgaben finanzieren – durch Steuern oder durch Schulden – keinen Einfluss auf die Gesamtnachfrage in der Volkswirtschaft hat, solange die Haushalte rational sind. Das grundlegende Argument ist, dass, wenn eine Regierung ihre Ausgaben durch Schulden finanziert, die Haushalte in der Erwartung höherer zukünftiger Steuern ihre Ersparnisse erhöhen, um sich auf diese Steuerlast vorzubereiten.

In mathematischen Begriffen kann dies wie folgt dargestellt werden: Angenommen, eine Regierung plant, ihre Ausgaben GGG über eine Anleihe zu finanzieren. Die Haushalte antizipieren, dass in der Zukunft die Steuern TTT steigen werden, um die Schulden zurückzuzahlen, und passen ihr Sparverhalten entsprechend an. Dies führt zu der Idee, dass die Nettowirkung von Staatsausgaben auf die Volkswirtschaft neutral bleibt, da die Ersparnis der Haushalte die zusätzliche Staatsausgabe ausgleicht.

Zusammengefasst:

  • Staatsausgaben können durch Steuern oder Schulden finanziert werden.
  • Haushalte passen ihre Sparquote an, um