StudierendeLehrende

Business Model Innovation

Business Model Innovation bezeichnet den Prozess, durch den Unternehmen ihre bestehenden Geschäftsmodelle grundlegend überarbeiten oder neue entwickeln, um sich an veränderte Marktbedingungen, Kundenbedürfnisse oder technologische Fortschritte anzupassen. Diese Innovation kann verschiedene Dimensionen betreffen, wie z.B. die Wertschöpfung, die Wertvermittlung und die Wertrealisierung. Typische Ansätze sind die Einführung neuer Produkte oder Dienstleistungen, die Veränderung der Preisstrukturen oder die Entwicklung alternativer Vertriebskanäle.

Ein erfolgreiches Beispiel für Business Model Innovation ist das Übergang von physischen Medien zu Streaming-Diensten, was Unternehmen wie Netflix revolutioniert hat. Wichtig ist, dass Unternehmen nicht nur ihre Angebote überdenken, sondern auch ihre gesamten Wertschöpfungsketten und Kundenbeziehungen neu gestalten, um wettbewerbsfähig zu bleiben.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Weierstrass-Vorbereitungssatz

Das Weierstrass Preparation Theorem ist ein fundamentales Resultat in der komplexen Analysis und der algebraischen Geometrie, das sich mit der Struktur von holomorphen Funktionen in der Nähe von isolierten Singularitäten befasst. Es besagt, dass jede holomorphe Funktion f(z)f(z)f(z) in einer Umgebung von einem Punkt aaa in der komplexen Ebene, der eine isolierte Singularität besitzt, sich in eine produktform darstellen lässt. Genauer gesagt kann f(z)f(z)f(z) in der Form

f(z)=(z−a)mg(z)f(z) = (z - a)^m g(z)f(z)=(z−a)mg(z)

geschrieben werden, wobei mmm eine nicht-negative ganze Zahl ist und g(z)g(z)g(z) eine holomorphe Funktion ist, die an aaa nicht verschwindet. Dies bedeutet, dass g(a)≠0g(a) \neq 0g(a)=0. Das Theorem ist besonders nützlich, um die Struktur von Funktionen zu analysieren und zu verstehen, wie sich die Werte der Funktion in der Umgebung der Singularität verhalten. Die Resultate des Weierstrass-Vorbereitungssatzes finden Anwendung in verschiedenen Bereichen, wie etwa der Singulärtheorie und der komplexen Differentialgeometrie.

Bell-Ungleichung-Verletzung

Die Bell'sche Ungleichung ist ein zentrales Konzept in der Quantenmechanik, das die Vorhersagen der Quantenmechanik mit denen der klassischen Physik vergleicht. Sie besagt, dass bestimmte statistische Korrelationen zwischen Messungen an zwei weit voneinander entfernten Teilchen, die in einem gemeinsamen Quantenzustand sind, nicht die Grenzen der klassischen Physik überschreiten sollten. Wenn jedoch Experimente durchgeführt werden, die die Annahmen der lokalen Realität und der verborgenen Variablen in der klassischen Physik testen, zeigen die Ergebnisse oft eine Verletzung dieser Ungleichung.

Diese Verletzung deutet darauf hin, dass die Teilchen auf eine Weise miteinander verbunden sind, die nicht durch klassische Konzepte wie lokale verborgene Variablen erklärbar ist. Stattdessen unterstützen die Ergebnisse die Quantenverschränkung, ein Phänomen, bei dem das Verhalten eines Teilchens instantan das eines anderen beeinflusst, unabhängig von der Entfernung zwischen ihnen. Die Verletzung der Bell'schen Ungleichung hat weitreichende Implikationen für unser Verständnis der Realität und stellt die klassischen Ansichten über Kausalität und Information in Frage.

Muon-anomales magnetisches Moment

Der Muon Anomalous Magnetic Moment (g-2) beschreibt die Abweichung des magnetischen Moments des Myons von dem, was durch die Dirac-Gleichung für Teilchen mit Spin 1/2 vorhergesagt wird. Das magnetische Moment eines Teilchens ist ein Maß dafür, wie es auf ein externes Magnetfeld reagiert. Im Fall des Myons wird das tatsächliche Verhältnis ggg (das magnetische Moment) durch die Gleichung g=2g = 2g=2 beschrieben, aber aufgrund von quantenmechanischen Effekten zeigt es eine kleine Abweichung, die als Anomalie bezeichnet wird. Diese Anomalie wird als aμ=g−22a_\mu = \frac{g-2}{2}aμ​=2g−2​ definiert, wobei aμa_\muaμ​ das Anomalous Magnetic Moment ist.

Die theoretische Berechnung dieser Anomalie umfasst Beiträge aus verschiedenen Feldtheorien, insbesondere der Quantenfeldtheorie, und spielt eine wichtige Rolle in der Suche nach neuen physikalischen Phänomenen jenseits des Standardmodells der Teilchenphysik. Experimentelle Messungen des Myon-Anomalous Magnetic Moment sind von großer Bedeutung, da sie die Vorhersagen der Theorie testen und Hinweise auf mögliche neue Teilchen oder Interaktionen liefern können.

Feynman-Diagramme

Feynman-Diagramme sind eine visuelle Darstellung von Wechselwirkungen in der Quantenfeldtheorie, die von Richard Feynman eingeführt wurden. Sie ermöglichen es Physikern, komplexe Prozesse wie Teilchenstreuung und -umwandlung einfach darzustellen und zu analysieren. In diesen Diagrammen werden Teilchen durch Linien repräsentiert, wobei gerade Linien für massive Teilchen und gewellte Linien für Bosonen, wie Photonen, stehen. Knoten oder Vertices in den Diagrammen zeigen Punkte an, an denen Teilchen miteinander wechselwirken, was die Berechnung von Wahrscheinlichkeiten für verschiedene physikalische Prozesse vereinfacht. Feynman-Diagramme sind nicht nur ein nützliches Werkzeug für die theoretische Physik, sondern auch für die experimentelle Physik, da sie helfen, Ergebnisse von Experimenten zu interpretieren und Vorhersagen zu treffen.

Reed-Solomon-Codes

Reed-Solomon-Codes sind eine Familie von Fehlerkorrekturcodes, die in der Informations- und Kommunikationstechnik weit verbreitet sind. Sie basieren auf der algebraischen Struktur von Polynomen über endlichen Körpern und sind in der Lage, mehrere Fehler in einem Datenblock zu erkennen und zu korrigieren. Ein Reed-Solomon-Code wird durch zwei Parameter definiert: nnn (die Gesamtlänge des Codes) und kkk (die Anzahl der Informationssymbole), wobei die Anzahl der korrigierbaren Fehler durch die Formel t=n−k2t = \frac{n - k}{2}t=2n−k​ gegeben ist. Diese Codes sind besonders effektiv in Anwendungen wie CDs, DVDs und QR-Codes, wo sie helfen, Datenintegrität trotz physischer Beschädigung oder Übertragungsfehler zu gewährleisten. Ihre Robustheit und Flexibilität machen sie zu einem unverzichtbaren Werkzeug in der modernen Datenübertragung und -speicherung.

Marshallian Nachfrage

Die Marshallian Demand beschreibt die Menge eines Gutes, die ein Konsument nachfragt, um seinen Nutzen zu maximieren, gegeben ein bestimmtes Einkommen und die Preise der Güter. Diese Nachfragefunktion basiert auf der Annahme, dass Konsumenten rational handeln und ihre Ressourcen effizient einsetzen. Der Prozess zur Bestimmung der Marshallian Demand umfasst die Lösung des Optimierungsproblems, bei dem der Nutzen maximiert und die Budgetbeschränkung berücksichtigt wird. Mathematisch lässt sich die Marshallian Demand für ein Gut xxx durch die Gleichung darstellen:

x(p,I)=argmaxx(U(x))unter der Bedingungp⋅x≤Ix(p, I) = \text{argmax}_{x} \left( U(x) \right) \quad \text{unter der Bedingung} \quad p \cdot x \leq Ix(p,I)=argmaxx​(U(x))unter der Bedingungp⋅x≤I

Hierbei steht ppp für den Preis des Gutes, III für das Einkommen und U(x)U(x)U(x) für die Nutzenfunktion des Konsumenten. Die Marshallian Demand ist somit eine zentrale Komponente der Mikroökonomie, da sie zeigt, wie Preisänderungen und Einkommensveränderungen das Konsumverhalten beeinflussen können.