StudierendeLehrende

Financial Contagion Network Effects

Financial Contagion Network Effects beziehen sich auf die Verbreitung von finanziellen Schocks oder Krisen innerhalb eines Netzwerks von verbundenen Institutionen, Märkten oder Volkswirtschaften. Diese Effekte treten auf, wenn die finanziellen Probleme eines einzelnen Akteurs, wie beispielsweise einer Bank oder eines Unternehmens, sich auf andere Akteure ausbreiten und eine Kettenreaktion auslösen. Die Mechanismen, die zu solchen Ansteckungen führen, sind vielfältig und können durch Interdependenzen in den Kreditbeziehungen, Liquiditätsengpässe oder den Verlust des Vertrauens in das gesamte System verursacht werden.

Ein Beispiel für diese Dynamik ist die globale Finanzkrise von 2008, bei der die Probleme im US-Immobilienmarkt rasch auf internationale Banken und Märkte übergriffen. Um die Risiken von finanziellen Ansteckungen besser zu verstehen, verwenden Ökonomen oft Netzwerkanalysen, um die Struktur der Verbindungen zwischen den Akteuren zu untersuchen. Dies ermöglicht es, potenzielle Schwachstellen im System zu identifizieren und präventive Maßnahmen zu entwickeln, um die Stabilität des Finanzsystems zu gewährleisten.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Hopcroft-Karp Matching

Das Hopcroft-Karp-Algorithmus ist ein effizienter Algorithmus zur Berechnung eines maximalen Matchings in bipartiten Graphen. Ein bipartiter Graph besteht aus zwei Mengen von Knoten, wobei Kanten nur zwischen Knoten aus verschiedenen Mengen existieren. Der Algorithmus kombiniert zwei Hauptphasen: die Suche nach augmentierenden Pfaden und die Aktualisierung des Matchings. Durch eine geschickte Anwendung von Breadth-First Search (BFS) und Depth-First Search (DFS) gelingt es, die Anzahl der benötigten Iterationen erheblich zu reduzieren, wodurch die Laufzeit auf O(EV)O(E \sqrt{V})O(EV​) sinkt, wobei EEE die Anzahl der Kanten und VVV die Anzahl der Knoten im Graphen ist. Die Idee hinter dem Algorithmus ist, dass durch das Finden und Ausnutzen von augmentierenden Pfaden das Matching schrittweise vergrößert wird, bis kein weiterer augmentierender Pfad mehr gefunden werden kann.

Dijkstra vs. A*-Algorithmus

Der Dijkstra-Algorithmus und der A-Algorithmus* sind beide Suchalgorithmen, die verwendet werden, um den kürzesten Pfad in einem Graphen zu finden, unterscheiden sich jedoch in ihrer Funktionsweise und Effizienz. Der Dijkstra-Algorithmus basiert auf dem Prinzip, die kürzesten bekannten Distanzen zu jedem Punkt im Graphen schrittweise zu erweitern, ohne dabei eine Heuristik zu verwenden, was bedeutet, dass er in der Regel weniger effizient ist, insbesondere in großen oder komplexen Graphen.

Im Gegensatz dazu nutzt der A*-Algorithmus eine Heuristik, die eine Schätzung der verbleibenden Kosten zu dem Ziel einbezieht, um die Suche zu optimieren. Dies ermöglicht es dem A*-Algorithmus, viel schneller zu einem Ziel zu gelangen, indem er gezielt vielversprechende Pfade auswählt. Die allgemeine Kostenfunktion für den A*-Algorithmus lautet:

f(n)=g(n)+h(n)f(n) = g(n) + h(n)f(n)=g(n)+h(n)

wobei g(n)g(n)g(n) die Kosten vom Startknoten bis zum aktuellen Knoten und h(n)h(n)h(n) die geschätzten Kosten vom aktuellen Knoten bis zum Zielknoten sind. Zusammenfassend lässt sich sagen, dass der Dijkstra-Algorithmus für ungewichtete Graphen geeignet ist, während der A*-Algorithmus für gewichtete Graphen mit einer geeigneten

Phasenverschobener Vollbrückenwandler

Der Phase-Shift Full-Bridge Converter ist ein leistungsfähiger DC-DC-Wandler, der häufig in Anwendungen wie der Stromversorgung von Hochleistungsgeräten eingesetzt wird. Er besteht aus vier Schaltern, die in einer Vollbrücke konfiguriert sind, und nutzt die Phasenverschiebung der Schaltsignale, um die Ausgangsspannung zu steuern. Diese Technik ermöglicht eine effiziente Energieübertragung und reduziert die Schaltverluste, da die Schalter in weicher Schaltung betrieben werden können. Die Ausgangsleistung kann durch die Anpassung der Phasenverschiebung zwischen den Schaltern variiert werden, was eine präzise Regelung der Ausgangsspannung ermöglicht.

Ein weiterer Vorteil dieses Konverters ist die Isolation zwischen Eingangs- und Ausgangsseite, die durch einen Transformator erreicht wird. Die mathematische Beziehung für die Ausgangsspannung VoutV_{out}Vout​ kann durch die Formel

Vout=Vin⋅DnV_{out} = \frac{V_{in} \cdot D}{n}Vout​=nVin​⋅D​

beschrieben werden, wobei VinV_{in}Vin​ die Eingangsspannung, DDD das Tastverhältnis und nnn das Übersetzungsverhältnis des Transformators ist.

Anisotrope thermische Ausdehnungsmaterialien

Anisotropische thermische Ausdehnungsmaterialien sind Materialien, deren Ausdehnungsverhalten in verschiedene Richtungen unterschiedlich ist. Dies bedeutet, dass die thermische Ausdehnung in einer bestimmten Richtung anders ist als in einer anderen. Diese Eigenschaft ist besonders wichtig in Anwendungen, bei denen präzise Dimensionen und Formen bei Temperaturänderungen erhalten werden müssen.

Die anisotropische Ausdehnung kann durch verschiedene Faktoren beeinflusst werden, darunter die Kristallstruktur des Materials und die Art der chemischen Bindungen. In vielen Fällen wird die thermische Ausdehnung durch den Wärmeausdehnungskoeffizienten α\alphaα beschrieben, der spezifisch für jede Richtung ist. Wenn ein Material beispielsweise in der x-Richtung eine höhere Ausdehnung aufweist als in der y-Richtung, wird dies als anisotrop bezeichnet. Solche Materialien finden häufig Anwendung in der Luft- und Raumfahrt, Elektronik und in der Konstruktion, wo thermische Stabilität und präzise Anpassungen entscheidend sind.

GARCH-Modell

Das GARCH-Modell (Generalized Autoregressive Conditional Heteroskedasticity) ist ein statistisches Modell, das häufig zur Analyse und Vorhersage von Zeitreihen mit variabler Volatilität verwendet wird, insbesondere in der Finanzwirtschaft. Es wurde entwickelt, um die Heteroskedastizität zu berücksichtigen, d.h. die Tatsache, dass die Varianz der Fehlerterme in einem Zeitreihenmodell nicht konstant ist, sondern sich über die Zeit ändert.

Das GARCH-Modell beschreibt die bedingte Varianz einer Zeitreihe als Funktion ihrer vorherigen Werte. Die allgemeine Form des GARCH(1,1)-Modells wird durch die Gleichung

σt2=α0+α1ϵt−12+β1σt−12\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2σt2​=α0​+α1​ϵt−12​+β1​σt−12​

definiert, wobei σt2\sigma_t^2σt2​ die bedingte Varianz zum Zeitpunkt ttt, ϵt−12\epsilon_{t-1}^2ϵt−12​ den vorherigen Fehlerterm und σt−12\sigma_{t-1}^2σt−12​ die vorherige bedingte Varianz darstellt. Die Parameter α0\alpha_0α0​, α1\alpha_1α1​ und β1\beta_1β1​ müssen positiv sein und erfüllen die Bedingung $ \alpha_1

Elektronenstrahllithographie

Electron Beam Lithography (EBL) ist ein präzises Verfahren zur Strukturierung von Materialien auf mikroskopischer Ebene, das häufig in der Halbleiterfertigung und der Nanotechnologie eingesetzt wird. Bei diesem Prozess wird ein fokussierter Elektronenstrahl auf ein beschichtetes Substrat gerichtet, das mit einem elektronensensitiven Material, dem sogenannten Resist, bedeckt ist. Durch die Wechselwirkung der Elektronen mit dem Resist werden bestimmte Bereiche des Materials chemisch verändert, was es ermöglicht, feine Muster zu erzeugen.

Die Auflösung von EBL kann bis in den Nanometerbereich reichen, was es zu einer idealen Technik für die Herstellung von Nanostrukturen und -schaltungen macht. Im Gegensatz zu traditionellen Lithographieverfahren bietet EBL die Flexibilität, komplexe Designs ohne die Notwendigkeit von Masken zu erstellen, was die Entwicklungszeit für Prototypen erheblich verkürzt. Allerdings ist die EBL im Vergleich zu anderen Lithographiemethoden oft langsamer und teurer, was ihre Anwendung auf spezifische Nischenmärkte beschränkt.