Finite Volume Method

Die Finite Volume Method (FVM) ist eine numerische Technik zur Lösung von partiellen Differentialgleichungen, die häufig in der Strömungsmechanik und Wärmeübertragung angewendet wird. Bei dieser Methode wird das gesamte Berechnungsgebiet in eine endliche Anzahl von Kontrollvolumen unterteilt, in denen die Erhaltungsgesetze für Masse, Impuls und Energie angewendet werden. Die Hauptidee besteht darin, die Integrale dieser Erhaltungsgesetze über jedes Kontrollvolumen zu formulieren und sie in eine diskrete Form zu überführen, was zu einem System von algebraischen Gleichungen führt.

Ein wesentlicher Vorteil der FVM ist, dass sie die physikalische Erhaltung von Größen wie Masse und Energie gewährleistet, da die Flüsse an den Grenzen der Kontrollvolumen explizit berechnet werden. Die Methode ist besonders geeignet für Probleme mit komplexen Geometrien und in der Lage, mit nichtlinearen Effekten und starken Gradienten umzugehen. In der mathematischen Formulierung wird oft das allgemeine Transportgleichungssystem verwendet, das in Form von:

tViϕdV+SiϕundS=0\frac{\partial}{\partial t} \int_{V_i} \phi \, dV + \int_{S_i} \phi \mathbf{u} \cdot \mathbf{n} \, dS = 0

dargestellt wird, wobei ϕ\phi die

Weitere verwandte Begriffe

Neurotransmitterdiffusion

Neurotransmitter Diffusion beschreibt den Prozess, durch den chemische Botenstoffe, die an Synapsen zwischen Nervenzellen freigesetzt werden, sich durch den synaptischen Spalt bewegen. Nachdem ein Aktionspotential die Freisetzung von Neurotransmittern wie Dopamin oder Serotonin aus dem präsynaptischen Neuron ausgelöst hat, diffundieren diese Moleküle in den synaptischen Spalt und binden an spezifische Rezeptoren auf der postsynaptischen Membran. Dieser Prozess ist entscheidend für die Signalübertragung im Nervensystem und beeinflusst zahlreiche physiologische Funktionen. Die Geschwindigkeit der Diffusion hängt von verschiedenen Faktoren ab, einschließlich der Konzentration der Neurotransmitter, der Temperatur und der Molekülgröße. Mathematisch kann die Diffusion durch das Fick'sche Gesetz beschrieben werden, das den Fluss von Teilchen in Bezug auf die Konzentrationsgradienten darstellt.

Hadronenbeschleuniger

Ein Hadron Collider ist ein Teilchenbeschleuniger, der dazu verwendet wird, subatomare Teilchen, insbesondere Hadronen wie Protonen und Neutronen, auf extrem hohe Geschwindigkeiten zu beschleunigen und sie zur Kollision zu bringen. Diese Kollisionen erzeugen Bedingungen, die kurz nach dem Urknall ähnlich sind, und ermöglichen es Wissenschaftlern, die grundlegenden Bausteine der Materie und die Kräfte, die sie zusammenhalten, zu untersuchen. Der bekannteste Hadron Collider ist der Large Hadron Collider (LHC) am CERN in der Nähe von Genf, der mit einem Umfang von 27 km der größte seiner Art ist. Durch die Analyse der Kollisionsergebnisse können Physiker Theorien wie das Standardmodell der Teilchenphysik testen und nach neuen Phänomenen wie der Dunklen Materie suchen. Die Forschung am LHC hat bereits zur Entdeckung des Higgs-Bosons geführt, einem entscheidenden Teilchen für das Verständnis der Masse im Universum.

Berechnungen des Schlupfs von Induktionsmotoren

Der Slip eines Induktionsmotors ist ein entscheidender Parameter, der die Differenz zwischen der synchronen Geschwindigkeit des Magnetfelds und der tatsächlichen Drehgeschwindigkeit des Rotors beschreibt. Er wird typischerweise in Prozent ausgedrückt und kann mit der folgenden Formel berechnet werden:

Slip(s)=NsNrNs×100\text{Slip} (s) = \frac{N_s - N_r}{N_s} \times 100

wobei NsN_s die synchronen Geschwindigkeit in U/min und NrN_r die tatsächliche Drehgeschwindigkeit des Rotors ist. Ein höherer Slip bedeutet, dass der Motor unter Last arbeitet und mehr Energie benötigt, um die erforderliche Drehmoment zu erzeugen. In der Praxis hat der Slip typischerweise Werte zwischen 2% und 6% bei voller Last, abhängig von der Konstruktion und dem Betrieb des Motors. Das Verständnis des Slips ist wichtig für die Effizienz und Leistung von Induktionsmotoren, da er direkt Einfluss auf den Energieverbrauch und die Wärmeentwicklung hat.

Bode-Gewinnreserve

Der Bode Gain Margin ist ein wichtiger Parameter in der Regelungstechnik, der die Stabilität eines Systems beschreibt. Er gibt an, wie viel Gewinn (Gain) ein System zusätzlich haben kann, bevor es instabil wird. Der Gain Margin wird in der Bode-Diagramm-Analyse ermittelt, wo die Frequenzantwort eines Systems grafisch dargestellt wird. Er wird definiert als der Unterschied zwischen dem aktuellen Verstärkungswert und dem Verstärkungswert, bei dem die Phase des Systems 180 Grad erreicht. Mathematisch kann der Gain Margin als folgt dargestellt werden:

Gain Margin=20log10(1K)\text{Gain Margin} = 20 \cdot \log_{10}\left(\frac{1}{K}\right)

wobei KK der Verstärkungswert ist, bei dem die Phase -180 Grad erreicht. Ein positiver Gain Margin zeigt an, dass das System stabil ist, während ein negativer Gain Margin auf eine instabile Rückkopplung hinweist.

Riemann-Lebesgue Lemma

Das Riemann-Lebesgue Lemma ist ein wichtiges Resultat in der Analysis, insbesondere in der Fourier-Analyse. Es besagt, dass die Fourier-Koeffizienten einer integrierbaren Funktion ff gegen null konvergieren, wenn die Frequenz nn gegen unendlich geht. Mathematisch ausgedrückt bedeutet dies, dass:

limnabf(x)einxdx=0\lim_{n \to \infty} \int_{a}^{b} f(x) e^{-i n x} \, dx = 0

für jede integrierbare Funktion ff auf dem Intervall [a,b][a, b]. Dies zeigt, dass hochfrequente Schwingungen die Werte der Funktion im Durchschnitt "auslöschen". Das Lemma ist nicht nur für die Theorie der Fourier-Reihen von Bedeutung, sondern hat auch Anwendungen in der Signalverarbeitung und der Lösung von Differentialgleichungen. Es verdeutlicht, dass glatte Funktionen im Frequenzbereich gut verhalten, während störende Punkte oder Unstetigkeiten in der Funktion keine signifikanten Beiträge zu den hohen Frequenzen liefern.

Festkörper-Lithium-Schwefel-Batterien

Solid-State Lithium-Sulfur Batterien sind eine vielversprechende Technologie für die Energiespeicherung, die sich durch eine hohe Energiedichte und Sicherheit auszeichnet. Im Gegensatz zu herkömmlichen Lithium-Ionen-Batterien verwenden diese Batterien einen festen Elektrolyten anstelle einer flüssigen Elektrolytlösung, was das Risiko von Leckagen und Bränden verringert. Die Energiedichte von Lithium-Sulfur Batterien kann theoretisch bis zu 500 Wh/kg erreichen, was sie potenziell leistungsfähiger macht als aktuelle Batterietypen.

Ein weiteres wichtiges Merkmal ist die Verwendung von Schwefel als Kathodenmaterial, das nicht nur kostengünstig, sondern auch umweltfreundlich ist. Allerdings stehen Forscher vor Herausforderungen wie der geringen elektrischen Leitfähigkeit von Schwefel und der Neigung zur Volumenänderung während des Lade- und Entladevorgangs, was die Lebensdauer der Batterie beeinträchtigen kann. Dank fortschrittlicher Materialien und Technologien wird jedoch intensiv an der Überwindung dieser Hürden gearbeitet, um die Markteinführung dieser innovativen Batterietechnologie zu beschleunigen.

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.