Finite Volume Method

Die Finite Volume Method (FVM) ist eine numerische Technik zur Lösung von partiellen Differentialgleichungen, die häufig in der Strömungsmechanik und Wärmeübertragung angewendet wird. Bei dieser Methode wird das gesamte Berechnungsgebiet in eine endliche Anzahl von Kontrollvolumen unterteilt, in denen die Erhaltungsgesetze für Masse, Impuls und Energie angewendet werden. Die Hauptidee besteht darin, die Integrale dieser Erhaltungsgesetze über jedes Kontrollvolumen zu formulieren und sie in eine diskrete Form zu überführen, was zu einem System von algebraischen Gleichungen führt.

Ein wesentlicher Vorteil der FVM ist, dass sie die physikalische Erhaltung von Größen wie Masse und Energie gewährleistet, da die Flüsse an den Grenzen der Kontrollvolumen explizit berechnet werden. Die Methode ist besonders geeignet für Probleme mit komplexen Geometrien und in der Lage, mit nichtlinearen Effekten und starken Gradienten umzugehen. In der mathematischen Formulierung wird oft das allgemeine Transportgleichungssystem verwendet, das in Form von:

tViϕdV+SiϕundS=0\frac{\partial}{\partial t} \int_{V_i} \phi \, dV + \int_{S_i} \phi \mathbf{u} \cdot \mathbf{n} \, dS = 0

dargestellt wird, wobei ϕ\phi die

Weitere verwandte Begriffe

Durchschlagfestigkeit

Die Dielectric Breakdown Strength (auch Durchschlagfestigkeit genannt) ist ein Maß für die Fähigkeit eines Materials, elektrischen Strom zu widerstehen, ohne zu brechen oder leitend zu werden. Sie wird definiert als die maximale elektrische Feldstärke, die ein Isolator aushalten kann, bevor er in einen leitenden Zustand übergeht. Der Wert wird typischerweise in Volt pro Meter (V/m) angegeben und ist entscheidend für die Auswahl von Isoliermaterialien in elektrischen Anwendungen.

Die Durchschlagfestigkeit hängt von verschiedenen Faktoren ab, darunter die Materialart, Temperatur, Feuchtigkeit und die Dauer der angelegten Spannung. Ein häufig verwendetes Beispiel ist die elektrische Durchschlagfestigkeit von Luft, die bei etwa 3×106V/m3 \times 10^6 \, \text{V/m} liegt. Materialien mit hoher Dielectric Breakdown Strength sind entscheidend für die Sicherheit und Effizienz elektrischer Systeme, insbesondere in Hochspannungsanwendungen.

Wärmeschutzbeschichtungen

Thermal Barrier Coatings (TBCs) sind spezielle Beschichtungen, die entwickelt wurden, um Materialien vor hohen Temperaturen und thermischen Schocks zu schützen. Diese Beschichtungen bestehen häufig aus keramischen Materialien, die eine geringe Wärmeleitfähigkeit aufweisen, wodurch sie als Isolatoren fungieren. Durch den Einsatz von TBCs können die Betriebstemperaturen von Bauteilen, wie beispielsweise Turbinenschaufeln in Gasturbinen, erhöht werden, was zu einer verbesserten Effizienz und einer längeren Lebensdauer der Komponenten führt.

Die Wirksamkeit von TBCs beruht auf mehreren Faktoren, darunter die Dicke, die Mikrostruktur der Beschichtung und die Anpassung an das Substrat. Eine gängige chemische Zusammensetzung für TBCs ist Zirkonia, die mit Yttrium stabilisiert wird (YSZ - Yttrium-stabilisiertes Zirkoniumdioxid). Diese Materialien können Temperaturen von über 1000 °C standhalten, was sie ideal für Anwendungen in der Luft- und Raumfahrt sowie in der Energietechnik macht.

Riemann-Zeta

Die Riemann-Zeta-Funktion ist eine komplexe Funktion, die in der Zahlentheorie eine zentrale Rolle spielt. Sie wird definiert für komplexe Zahlen ss mit dem Realteil größer als 1 durch die unendliche Reihe:

ζ(s)=n=11ns\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}

Diese Funktion kann durch analytische Fortsetzung auf andere Werte von ss erweitert, außer bei s=1s = 1, wo sie einen einfachen Pol hat. Ein besonders bemerkenswerter Aspekt der Riemann-Zeta-Funktion ist ihre Verbindung zur Verteilung der Primzahlen, wie im berühmten Riemann-Hypothese formuliert, die besagt, dass alle nicht-trivialen Nullstellen der Funktion eine bestimmte Eigenschaft bezüglich ihrer Lage auf der kritischen Linie Re(s)=12\text{Re}(s) = \frac{1}{2} haben. Die Zeta-Funktion spielt auch eine wichtige Rolle in verschiedenen Bereichen der Mathematik und Physik, einschließlich der Quantenmechanik und der statistischen Physik.

Mahler-Maß

Die Mahler Measure ist ein Konzept aus der algebraischen Geometrie und der Zahlentheorie, das zur Quantifizierung der Komplexität von Polynomen verwendet wird. Sie ist definiert für ein gegebenes mehrvariables Polynom P(x1,x2,,xn)P(x_1, x_2, \ldots, x_n) und wird mathematisch als

M(P)=i=1nmax(1,ai)M(P) = \prod_{i=1}^{n} \max(1, |a_i|)

beschrieben, wobei aia_i die Koeffizienten des Polynoms sind. Die Mahler Measure misst dabei nicht nur den Betrag der Koeffizienten, sondern berücksichtigt auch die maximalen Werte, um eine Art "Volumen" im Koeffizientenraum zu erfassen. Diese Maßzahl hat bedeutende Anwendungen in der Diophantischen Geometrie, da sie hilft, die Größe und die Wurzeln von Polynomen zu charakterisieren. Zudem spielt die Mahler Measure eine Rolle in der Untersuchung von transzendentalen Zahlen und der arithmetischen Geometrie.

Dünnschichtinterferenzbeschichtungen

Thin Film Interference Coatings sind spezielle Beschichtungen, die auf der Interferenz von Licht basieren, das durch dünne Schichten von Materialien reflektiert und gebrochen wird. Diese Beschichtungen bestehen typischerweise aus mehreren Schichten mit unterschiedlichen Brechungsindizes, die so gestaltet sind, dass sie das Licht auf bestimmte Weise manipulieren. Wenn Licht auf die dünne Schicht trifft, wird ein Teil des Lichts an der oberen Oberfläche und ein Teil an der unteren Oberfläche reflektiert. Die beiden Lichtwellen können miteinander interferieren, was zu verstärkten oder ausgelöschten Lichtintensitäten führt, abhängig von der Wellenlänge des Lichts und der Dicke der Schichten.

Mathematisch wird die Bedingung für konstruktive Interferenz durch die Gleichung

2nd=mλ2 n d = m \lambda

beschrieben, wobei nn der Brechungsindex, dd die Dicke der Schicht, mm eine ganze Zahl (Ordnung der Interferenz) und λ\lambda die Wellenlänge des Lichts ist. Diese Technologie findet Anwendung in verschiedenen Bereichen wie der Optik, um Antireflektionsbeschichtungen, Spiegel oder Filter zu erstellen. Die gezielte Kontrolle der Schichtdicken und -materialien ermöglicht es, spezifische optische Eigenschaften zu erzielen,

Shapley-Wert

Der Shapley Value ist ein Konzept aus der kooperativen Spieltheorie, das zur Verteilung von Gewinnen oder Verlusten unter den Mitgliedern einer Koalition verwendet wird. Er wurde von Lloyd Shapley entwickelt und basiert auf der Idee, dass jeder Spieler einen bestimmten Beitrag zum Gesamtergebnis leistet. Der Shapley Value berücksichtigt nicht nur den individuellen Beitrag eines Spielers, sondern auch, wie dieser Beitrag in verschiedenen Koalitionen zum Tragen kommt.

Mathematisch wird der Shapley Value für einen Spieler ii in einer Koalition durch die Formel

ϕi(v)=SN{i}S!(NS1)!N!(v(S{i})v(S))\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! \cdot (|N| - |S| - 1)!}{|N|!} \cdot (v(S \cup \{i\}) - v(S))

definiert, wobei NN die Menge aller Spieler ist und v(S)v(S) den Wert der Koalition SS darstellt. Der Shapley Value hat zahlreiche Anwendungen in verschiedenen Bereichen, wie z.B. der Wirtschaft, der Politik und der Verteilung von Ressourcen, da er faire und rationale Entscheidungsfindungen fördert.

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.