StudierendeLehrende

Fourier Inversion Theorem

Das Fourier Inversion Theorem ist ein zentrales Ergebnis in der Fourier-Analysis, das die Beziehung zwischen einer Funktion und ihrer Fourier-Transformierten beschreibt. Es besagt, dass jede quadrat-integrierbare Funktion f(t)f(t)f(t) durch ihre Fourier-Transformierte f^(ξ)\hat{f}(\xi)f^​(ξ) eindeutig rekonstruiert werden kann. Mathematisch ausgedrückt lautet die Beziehung:

f(t)=∫−∞∞f^(ξ)e2πiξt dξf(t) = \int_{-\infty}^{\infty} \hat{f}(\xi) e^{2\pi i \xi t} \, d\xif(t)=∫−∞∞​f^​(ξ)e2πiξtdξ

Hierbei ist e2πiξte^{2\pi i \xi t}e2πiξt der komplexe Exponentialausdruck, der die Frequenzkomponenten darstellt. Diese Umkehrung ist besonders wichtig, da sie es ermöglicht, Zeit- oder Raumsignale aus ihren Frequenzkomponenten wiederherzustellen. Die Anwendung des Theorems findet sich in verschiedenen Bereichen, wie in der Signalverarbeitung, der Quantenmechanik und der Bildbearbeitung, wo es hilft, komplexe Funktionen in einfachere Frequenzdarstellungen zu zerlegen und umgekehrt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

PWM-Modulation

Die Pulsweitenmodulation (PWM) ist eine Technik zur Steuerung der Leistung an elektrischen Geräten, indem das Verhältnis von Ein- und Ausschaltzeiten eines Signals variiert wird. Bei PWM wird ein digitales Signal mit einer konstanten Frequenz erzeugt, dessen Pulsbreite (die Zeit, in der das Signal auf "hoch" steht) moduliert wird, um die effektive Spannung zu steuern. Das bedeutet, dass je länger der Puls im Vergleich zur Gesamtperiode ist, desto mehr Energie wird zum Verbraucher geleitet.

Die PWM kann mathematisch durch die Duty-Cycle-Formel beschrieben werden:

Duty Cycle(%)=(TONTON+TOFF)×100\text{Duty Cycle} (\%) = \left( \frac{T_{ON}}{T_{ON} + T_{OFF}} \right) \times 100Duty Cycle(%)=(TON​+TOFF​TON​​)×100

wobei TONT_{ON}TON​ die Zeit ist, in der das Signal aktiv ist, und TOFFT_{OFF}TOFF​ die Zeit, in der das Signal inaktiv ist. Diese Methode findet breite Anwendung in der Steuerung von Motoren, der Dimmtechnik für LEDs und in der Regelung von Heizsystemen, da sie eine präzise Kontrolle der Leistung bei minimalem Energieverlust ermöglicht.

Boltzmann-Verteilung

Die Boltzmann-Verteilung beschreibt, wie sich Teilchen in einem thermodynamischen System auf verschiedene Energiezustände verteilen. Sie ist ein fundamentales Konzept in der statistischen Mechanik und basiert auf der Annahme, dass die Wahrscheinlichkeit, ein Teilchen in einem bestimmten Energiezustand EEE zu finden, proportional zur Exponentialfunktion des negativen Verhältnisses der Energie zu der Temperatur TTT ist. Mathematisch wird dies ausgedrückt durch die Formel:

P(E)=e−EkTZP(E) = \frac{e^{-\frac{E}{kT}}}{Z}P(E)=Ze−kTE​​

Hierbei steht P(E)P(E)P(E) für die Wahrscheinlichkeit, den Zustand mit Energie EEE zu finden, kkk ist die Boltzmann-Konstante und ZZZ ist die Zustandssumme, die als Normierungsfaktor dient. Die Boltzmann-Verteilung zeigt, dass bei höheren Temperaturen mehr Teilchen in höhere Energiezustände gelangen können, während bei niedrigeren Temperaturen die meisten Teilchen in den niedrigeren Energiezuständen verbleiben. Dieses Prinzip ist entscheidend für das Verständnis von Phänomenen wie Wärmeleitung, chemischen Reaktionen und dem Verhalten von Gasen.

Eigenschaften der Singulärwertzerlegung

Die Singulärwertzerlegung (SVD) ist eine fundamentale Technik in der linearen Algebra, die es ermöglicht, eine Matrix AAA in drei Komponenten zu zerlegen: A=UΣVTA = U \Sigma V^TA=UΣVT. Hierbei ist UUU eine orthogonale Matrix, die die linken singulären Vektoren enthält, Σ\SigmaΣ eine diagonale Matrix mit den Singulärwerten in absteigender Reihenfolge, und VTV^TVT die Transponierte einer orthogonalen Matrix, die die rechten singulären Vektoren enthält. Eine der wichtigsten Eigenschaften der SVD ist, dass sie die Struktur der Matrix erfasst und somit zur Dimensionenreduktion oder zur Lösung von Überbestimmten Gleichungssystemen verwendet werden kann.

Zusätzlich sind die Singulärwerte nicht negativ, was bedeutet, dass sie die relative Bedeutung der entsprechenden singulären Vektoren quantifizieren können. Außerdem ist die Anzahl der nicht-null Singulärwerte gleich dem Rang der Matrix, was einen direkten Zusammenhang zwischen der SVD und der Rangbestimmung bietet. Die SVD ist nicht nur für quadratische Matrizen anwendbar, sondern auch für rechteckige Matrizen, was ihre Vielseitigkeit in verschiedenen Anwendungen, wie z.B. in der maschinellen Lernens und Signalverarbeitung, unterstreicht.

Halbleiterdotierungskonzentration

Die Dopingkonzentration in Halbleitern bezieht sich auf die Menge an Verunreinigungen, die absichtlich in ein reines Halbleitermaterial eingeführt werden, um dessen elektrische Eigenschaften zu verändern. Diese Verunreinigungen, bekannt als Dotierstoffe, können entweder Elektronendonatoren (n-Typ-Dotierung) oder Elektronenakzeptoren (p-Typ-Dotierung) sein. Die Dopingkonzentration wird oft in Einheiten wie Atomen pro Kubikzentimeter (cm³) angegeben und hat einen direkten Einfluss auf die Leitfähigkeit des Halbleiters.

Die Beziehung zwischen der Dopingkonzentration NNN und der elektrischen Leitfähigkeit σ\sigmaσ eines Halbleiters kann durch die Gleichung:

σ=q⋅(n+p)\sigma = q \cdot (n + p)σ=q⋅(n+p)

beschrieben werden, wobei qqq die Elementarladung, nnn die Konzentration der freien Elektronen und ppp die Konzentration der Löcher darstellt. Eine höhere Dopingkonzentration führt typischerweise zu einer erhöhten Leitfähigkeit, jedoch kann eine zu hohe Konzentration auch zu Effekten wie Mobilitätsverlust führen, was die Effizienz des Halbleiters beeinträchtigt.

Risikoprämie

Der Risk Premium ist die zusätzliche Rendite, die ein Anleger erwartet, um das Risiko einer bestimmten Investition im Vergleich zu einer risikofreien Anlage einzugehen. Dieser Aufschlag spiegelt die Unsicherheit und die potenziellen Verluste wider, die mit risikobehafteten Anlagen wie Aktien oder Unternehmensanleihen verbunden sind. Der Risk Premium kann durch die Differenz zwischen der erwarteten Rendite einer riskanten Anlage RrR_rRr​ und der Rendite einer risikofreien Anlage RfR_fRf​ berechnet werden:

Risk Premium=Rr−Rf\text{Risk Premium} = R_r - R_fRisk Premium=Rr​−Rf​

Ein höherer Risk Premium deutet darauf hin, dass Anleger bereit sind, mehr Risiko einzugehen, um eine potenziell höhere Rendite zu erzielen. Faktoren, die den Risk Premium beeinflussen können, sind die allgemeine Marktentwicklung, wirtschaftliche Bedingungen und die spezifischen Risiken des Unternehmens oder Sektors. In der Finanzwelt ist das Verständnis des Risk Premium entscheidend, um fundierte Investitionsentscheidungen zu treffen.

Neurotransmitterdiffusion

Neurotransmitter Diffusion beschreibt den Prozess, durch den chemische Botenstoffe, die an Synapsen zwischen Nervenzellen freigesetzt werden, sich durch den synaptischen Spalt bewegen. Nachdem ein Aktionspotential die Freisetzung von Neurotransmittern wie Dopamin oder Serotonin aus dem präsynaptischen Neuron ausgelöst hat, diffundieren diese Moleküle in den synaptischen Spalt und binden an spezifische Rezeptoren auf der postsynaptischen Membran. Dieser Prozess ist entscheidend für die Signalübertragung im Nervensystem und beeinflusst zahlreiche physiologische Funktionen. Die Geschwindigkeit der Diffusion hängt von verschiedenen Faktoren ab, einschließlich der Konzentration der Neurotransmitter, der Temperatur und der Molekülgröße. Mathematisch kann die Diffusion durch das Fick'sche Gesetz beschrieben werden, das den Fluss von Teilchen in Bezug auf die Konzentrationsgradienten darstellt.