StudierendeLehrende

Linear Parameter Varying Control

Linear Parameter Varying Control (LPV) ist ein Regelungsverfahren, das speziell für Systeme entwickelt wurde, deren Dynamik sich über einen bestimmten Betriebsbereich verändert. Im Gegensatz zu klassischen linearen Regelungen, die für ein festes Modell arbeiten, berücksichtigt LPV die Variation von Parametern, die das Systemverhalten beeinflussen können. Dabei wird das System als eine Familie von linearen Modellen über einen Zustandsraummodell betrachtet, wobei die Parameter in Abhängigkeit von einem oder mehreren Variablen (z.B. Zeit oder Zustand) variieren.

Die Hauptidee hinter LPV ist, die Regelungsstrategie an die aktuellen Betriebsbedingungen anzupassen, um die Leistung zu optimieren. Dies geschieht typischerweise durch die Verwendung von Parameter-Schätzungen und Modellierungstechniken, die es ermöglichen, das Systemverhalten in Abhängigkeit von den aktuellen Parametern zu modellieren. Mathematisch kann ein LPV-System durch die Gleichung

x˙(t)=A(p(t))x(t)+B(p(t))u(t)\dot{x}(t) = A(p(t))x(t) + B(p(t))u(t)x˙(t)=A(p(t))x(t)+B(p(t))u(t)

beschrieben werden, wobei p(t)p(t)p(t) die variablen Parameter darstellt, A(p(t))A(p(t))A(p(t)) und B(p(t))B(p(t))B(p(t)) die zustandsabhängigen Matrizen sind. LPV-Regelungen finden Anwendung in einer Vielzahl

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Preisuntergrenze

Ein Price Floor ist ein staatlich festgelegter Mindestpreis für ein Produkt oder eine Dienstleistung, der nicht unterschritten werden darf. Dieser Mindestpreis wird oft eingeführt, um Produzenten vor extremen Preisschwankungen zu schützen und um sicherzustellen, dass ein gewisses Einkommensniveau für die Anbieter gewährleistet ist. Ein typisches Beispiel für einen Price Floor ist der Mindestlohn, der sicherstellt, dass Arbeitnehmer ein bestimmtes Einkommen erhalten.

Die Auswirkungen eines Price Floors können vielfältig sein:

  • Überangebot: Wenn der festgelegte Preis über dem Gleichgewichtspreis liegt, kann es zu einem Überangebot kommen, da Verkäufer bereit sind, mehr zu produzieren, als Käufer bereit sind zu kaufen.
  • Ressourcenverteilung: Ein Price Floor kann zu einer ineffizienten Verteilung von Ressourcen führen, da überschüssige Waren nicht verkauft werden können.

In der mathematischen Darstellung könnte der Price Floor als PfP_fPf​ definiert werden, wobei gilt: Pf>PeP_f > P_ePf​>Pe​, wobei PeP_ePe​ der Gleichgewichtspreis ist.

Neurotransmitter-Rezeptor-Bindung

Neurotransmitter-Rezeptor-Bindung beschreibt den Prozess, bei dem Chemikalien, die als Neurotransmitter bekannt sind, an spezifische Rezeptoren auf der Oberfläche von Nervenzellen (Neuronen) andocken. Dieser Bindungsprozess ist entscheidend für die Übertragung von Signalen im Nervensystem. Wenn ein Neurotransmitter an seinen Rezeptor bindet, verändert sich die Struktur des Rezeptors, was zu einer Aktivierung oder Hemmung des neuronalen Signals führt. Diese Wechselwirkung kann als Schlüssel-Schloss-Prinzip betrachtet werden, wobei der Neurotransmitter der Schlüssel und der Rezeptor das Schloss ist.

Die Affinität eines Neurotransmitters für einen bestimmten Rezeptor wird durch verschiedene Faktoren beeinflusst, einschließlich der chemischen Struktur des Neurotransmitters und der Konformation des Rezeptors. Diese Dynamik ist entscheidend für die Regulierung vieler physiologischer Prozesse, wie z.B. Stimmung, Schlaf und Schmerzempfinden.

Koopman-Operator

Der Koopman Operator ist ein mathematisches Konzept, das in der dynamischen Systemtheorie verwendet wird, um das Verhalten nichtlinearer Systeme zu analysieren. Er betrachtet die Entwicklung von Funktionen, die auf den Zustandsräumen eines dynamischen Systems definiert sind, und erlaubt es, die Dynamik des Systems in einem höheren dimensionalen Raum zu untersuchen. Der Operator K\mathcal{K}K ist definiert als:

Kf(x)=f(ϕ(t,x))\mathcal{K} f(x) = f(\phi(t, x))Kf(x)=f(ϕ(t,x))

wobei fff eine messbare Funktion ist, xxx der Zustand des Systems und ϕ(t,x)\phi(t, x)ϕ(t,x) die Flussfunktion, die die Zeitentwicklung des Systems beschreibt. Im Gegensatz zu traditionellen Ansätzen, die oft auf den Zustand selbst fokussiert sind, ermöglicht der Koopman Operator die Untersuchung von observablen Größen und deren zeitlicher Entwicklung, was insbesondere in der modernen Datenanalyse und Maschinelles Lernen von Bedeutung ist. Durch die Anwendung des Koopman Operators können Forscher auch lineare Techniken verwenden, um nichtlineare Systeme zu analysieren, was neue Perspektiven und Werkzeuge für die Systemanalyse eröffnet.

Fermi-Goldene Regel

Die Fermi Golden Rule ist ein zentraler Bestandteil der Quantenmechanik und beschreibt die Übergangswahrscheinlichkeit eines quantenmechanischen Systems von einem Zustand in einen anderen. Sie wird häufig verwendet, um die Häufigkeit von Übergängen zwischen verschiedenen Energieniveaus in einem System zu bestimmen, insbesondere in der Störungstheorie. Mathematisch ausgedrückt lautet die Regel:

Wfi=2πℏ∣⟨f∣H′∣i⟩∣2ρ(Ef)W_{fi} = \frac{2\pi}{\hbar} | \langle f | H' | i \rangle |^2 \rho(E_f)Wfi​=ℏ2π​∣⟨f∣H′∣i⟩∣2ρ(Ef​)

Hierbei steht WfiW_{fi}Wfi​ für die Übergangswahrscheinlichkeit von einem Anfangszustand ∣i⟩|i\rangle∣i⟩ zu einem Endzustand ∣f⟩|f\rangle∣f⟩, H′H'H′ ist das Störungs-Hamiltonian und ρ(Ef)\rho(E_f)ρ(Ef​) die Zustandsdichte am Endzustand. Die Fermi Golden Rule ist besonders nützlich in der Festkörperphysik, der Kernphysik und der Quantenoptik, da sie hilft, Prozesse wie die Absorption von Photonen oder die Streuung von Teilchen zu analysieren. Sie zeigt auf, dass die Übergangswahrscheinlichkeit proportional zur Dichte der Zustände und der Matrixelemente zwischen den Zuständen ist, was tiefere Einsichten in die Wechselwirkungen von Teilchen ermöglicht.

Halbleiterdotierungskonzentration

Die Dopingkonzentration in Halbleitern bezieht sich auf die Menge an Verunreinigungen, die absichtlich in ein reines Halbleitermaterial eingeführt werden, um dessen elektrische Eigenschaften zu verändern. Diese Verunreinigungen, bekannt als Dotierstoffe, können entweder Elektronendonatoren (n-Typ-Dotierung) oder Elektronenakzeptoren (p-Typ-Dotierung) sein. Die Dopingkonzentration wird oft in Einheiten wie Atomen pro Kubikzentimeter (cm³) angegeben und hat einen direkten Einfluss auf die Leitfähigkeit des Halbleiters.

Die Beziehung zwischen der Dopingkonzentration NNN und der elektrischen Leitfähigkeit σ\sigmaσ eines Halbleiters kann durch die Gleichung:

σ=q⋅(n+p)\sigma = q \cdot (n + p)σ=q⋅(n+p)

beschrieben werden, wobei qqq die Elementarladung, nnn die Konzentration der freien Elektronen und ppp die Konzentration der Löcher darstellt. Eine höhere Dopingkonzentration führt typischerweise zu einer erhöhten Leitfähigkeit, jedoch kann eine zu hohe Konzentration auch zu Effekten wie Mobilitätsverlust führen, was die Effizienz des Halbleiters beeinträchtigt.

Navier-Stokes-Turbulenzmodellierung

Das Navier-Stokes-Gleichungssystem beschreibt die Bewegungen von Fluiden und ist grundlegend für das Verständnis von Turbulenz. Turbulenz ist ein komplexes Phänomen, das durch chaotische Strömungen und Strömungsinstabilitäten gekennzeichnet ist. Bei der Modellierung von Turbulenz mit den Navier-Stokes-Gleichungen stehen Wissenschaftler vor der Herausforderung, die Vielzahl von Skalen und dynamischen Prozessen zu erfassen. Es gibt verschiedene Ansätze zur Turbulenzmodellierung, darunter:

  • Direkte Numerische Simulation (DNS): Diese Methode löst die Navier-Stokes-Gleichungen direkt und erfordert enorme Rechenressourcen.
  • Großes Eddy Simulation (LES): Hierbei werden die großen Strömungsstrukturen direkt simuliert, während die kleineren Turbulenzen modelliert werden.
  • Reynolds-zeitliche Mittelung: Bei diesem Ansatz werden die Gleichungen auf Mittelwerte angewendet, um die Effekte der Turbulenz statistisch zu erfassen.

Die Wahl des Modells hängt oft von der spezifischen Anwendung und den verfügbaren Rechenressourcen ab. Turbulenzmodellierung ist entscheidend in vielen Ingenieursdisziplinen, wie z.B. der Luftfahrt, dem Maschinenbau und der Umwelttechnik.