StudierendeLehrende

Linear Parameter Varying Control

Linear Parameter Varying Control (LPV) ist ein Regelungsverfahren, das speziell für Systeme entwickelt wurde, deren Dynamik sich über einen bestimmten Betriebsbereich verändert. Im Gegensatz zu klassischen linearen Regelungen, die für ein festes Modell arbeiten, berücksichtigt LPV die Variation von Parametern, die das Systemverhalten beeinflussen können. Dabei wird das System als eine Familie von linearen Modellen über einen Zustandsraummodell betrachtet, wobei die Parameter in Abhängigkeit von einem oder mehreren Variablen (z.B. Zeit oder Zustand) variieren.

Die Hauptidee hinter LPV ist, die Regelungsstrategie an die aktuellen Betriebsbedingungen anzupassen, um die Leistung zu optimieren. Dies geschieht typischerweise durch die Verwendung von Parameter-Schätzungen und Modellierungstechniken, die es ermöglichen, das Systemverhalten in Abhängigkeit von den aktuellen Parametern zu modellieren. Mathematisch kann ein LPV-System durch die Gleichung

x˙(t)=A(p(t))x(t)+B(p(t))u(t)\dot{x}(t) = A(p(t))x(t) + B(p(t))u(t)x˙(t)=A(p(t))x(t)+B(p(t))u(t)

beschrieben werden, wobei p(t)p(t)p(t) die variablen Parameter darstellt, A(p(t))A(p(t))A(p(t)) und B(p(t))B(p(t))B(p(t)) die zustandsabhängigen Matrizen sind. LPV-Regelungen finden Anwendung in einer Vielzahl

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

UCB-Algorithmus in Mehrarmigen Banditen

Der UCB-Algorithmus (Upper Confidence Bound) ist eine effektive Strategie zur Lösung des Multi-Armed Bandit-Problems, das in der Entscheidungsfindung und im maschinellen Lernen häufig vorkommt. Bei diesem Problem steht ein Agent vor der Wahl, aus mehreren Optionen (Armen) zu wählen, wobei jede Option eine unbekannte Belohnungsverteilung hat. Der UCB-Algorithmus verfolgt einen explorativen Ansatz, indem er sowohl die mittlere Belohnung jeder Option als auch die Unsicherheit über diese Schätzungen berücksichtigt.

Die zentrale Idee des UCB-Algorithmus besteht darin, eine obere Schranke für die geschätzte Belohnung jeder Option zu berechnen, die sowohl die bisherige Leistung als auch die Anzahl der Male, die die Option gewählt wurde, einbezieht. Diese Schranke wird wie folgt definiert:

UCBt(a)=X^t(a)+2ln⁡tNt(a)UCB_t(a) = \hat{X}_t(a) + \sqrt{\frac{2 \ln t}{N_t(a)}}UCBt​(a)=X^t​(a)+Nt​(a)2lnt​​

Hierbei ist X^t(a)\hat{X}_t(a)X^t​(a) die geschätzte durchschnittliche Belohnung der Option aaa zum Zeitpunkt ttt, Nt(a)N_t(a)Nt​(a) die Anzahl der Ziehungen von Option aaa, und ln⁡t\ln tlnt der natürliche Logarithmus von ttt. Der Agent wählt dann

Nicht-kodierende RNA-Funktionen

Nicht-kodierende RNAs (ncRNAs) sind RNA-Moleküle, die nicht in Proteine übersetzt werden, aber dennoch eine entscheidende Rolle in verschiedenen biologischen Prozessen spielen. Sie sind an der Regulation der Genexpression, der RNA-Prozessierung und der Chromatinstruktur beteiligt. Zu den wichtigsten Klassen von ncRNAs gehören miRNAs, die die mRNA-Stabilität und -Translation beeinflussen, und lncRNAs, die als Regulatoren in der Genaktivität fungieren können. Darüber hinaus spielen ncRNAs eine Rolle in der Zellkernorganisation und der Reaktion auf Stress. Ihre Funktionen sind komplex und vielschichtig, und sie tragen zur Homöostase und Entwicklung in Organismen bei, indem sie verschiedene zelluläre Prozesse fein abstimmen.

Peltier-Kühleffekt

Der Peltier-Kühleffekt ist ein thermodynamisches Phänomen, das auftritt, wenn elektrischer Strom durch zwei unterschiedliche Materialien fließt, die an einem Kontaktpunkt verbunden sind. Dieser Effekt führt dazu, dass an einem Ende der Verbindung Wärme entzogen wird, während am anderen Ende Wärme freigesetzt wird. Dies geschieht aufgrund der unterschiedlichen thermischen Eigenschaften der Materialien, typischerweise Halbleiter, und wird oft in sogenannten Peltier-Elementen genutzt.

Die Kühlung an einem Ende kann mathematisch durch die Peltier-Wärme QQQ beschrieben werden, die durch die Formel

Q=ΠIQ = \Pi IQ=ΠI

ausgedrückt wird, wobei Π\PiΠ die Peltier-Koeffizienten und III die Stromstärke ist. Der Peltier-Kühleffekt findet Anwendung in verschiedenen Bereichen, wie z.B. in Kühlschränken, Thermoelektrischen Generatoren und in der Elektronik zur Kühlung von Prozessoren. Besonders vorteilhaft ist, dass dieser Effekt keine beweglichen Teile benötigt und somit wartungsarm ist.

Wannier-Funktion

Die Wannier-Funktion ist ein Konzept aus der Festkörperphysik, das verwendet wird, um die Elektronenwellenfunktionen in einem Kristallgitter zu beschreiben. Sie stellt eine lokalisierte Darstellung der Elektronenzustände dar und ist besonders nützlich für die Analyse von Bandstrukturen und topologischen Eigenschaften von Materialien. Mathematisch wird eine Wannier-Funktion Wn(r)W_n(\mathbf{r})Wn​(r) aus den Bloch-Funktionen ψn,k(r)\psi_{n,\mathbf{k}}(\mathbf{r})ψn,k​(r) abgeleitet, indem eine Fourier-Transformation über den gesamten Brillouin-Zone-Bereich durchgeführt wird:

Wn(r)=1N∑keik⋅rψn,k(r),W_n(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{r}} \psi_{n,\mathbf{k}}(\mathbf{r}),Wn​(r)=N​1​k∑​eik⋅rψn,k​(r),

wobei NNN die Anzahl der k-punkte ist. Die Wannier-Funktionen sind orthonormiert und können verwendet werden, um die elektronischen Eigenschaften von Materialien zu untersuchen, insbesondere in Bezug auf Korrelationsphänomene und wenig-kopplungs Modelle. Ihre Lokalisierung ermöglicht es, die Wechselwirkungen zwischen Elektronen in einem Kristall effektiv zu simulieren und zu verstehen.

Exciton-Polariton-Kondensation

Die Exciton-Polariton-Kondensation ist ein faszinierendes Phänomen, das in Halbleitermaterialien auftritt, wenn Licht und Materie in einer Weise koppeln, dass sie gemeinsame Eigenschaften entwickeln. Exciton-Polariton sind quasiteilchen, die aus der Wechselwirkung von Excitonen (gebundenen Elektron-Loch-Paaren) und Photonen entstehen. Bei geeigneten Bedingungen, wie niedrigen Temperaturen und hoher Lichtintensität, können diese Polaritonen in einen kollapsierenden Zustand übergehen, ähnlich wie bei der Bose-Einstein-Kondensation. In diesem Zustand zeigen sie kollektive Eigenschaften und können makroskopische Quantenzustände bilden. Die Entstehung von Exciton-Polariton-Kondensaten hat bedeutende Implikationen für die Entwicklung von quantum optischen und nanophotonischen Technologien, da sie das Potenzial bieten, neuartige optoelektronische Geräte zu entwickeln.

Funktionelle MRT-Analyse

Die funktionelle Magnetresonanztomographie (fMRT) ist eine bildgebende Methode, die es ermöglicht, die Gehirnaktivität zu messen, indem Veränderungen im Blutfluss und im Sauerstoffgehalt beobachtet werden. Diese Technik basiert auf dem Prinzip, dass aktive Hirnregionen einen erhöhten Blutfluss benötigen, was durch die Blood Oxygen Level Dependent (BOLD)-Kontrasttechnik erfasst wird. Bei der Analyse von fMRT-Daten werden häufig verschiedene statistische Methoden angewendet, um Muster in der Aktivierung zu identifizieren und die Reaktionen des Gehirns auf bestimmte Stimuli oder Aufgaben zu untersuchen. Zu den gängigen Analysen gehören die Gruppenvergleiche, um Unterschiede zwischen verschiedenen Populationen zu erkennen, und die Zeitreihenanalysen, um die Aktivität über verschiedene Zeitpunkte hinweg zu verfolgen. Diese Informationen sind entscheidend für das Verständnis von Gehirnfunktionen und pathologischen Zuständen, wie etwa neurologischen Erkrankungen oder psychischen Störungen.