Die Fraktaldimension ist ein Konzept aus der Mathematik, das die Komplexität und den Raumfüllungsgrad von Fraktalen beschreibt. Im Gegensatz zur klassischen Dimension, die nur ganze Zahlen annimmt (0 für Punkte, 1 für Linien, 2 für Flächen usw.), kann die Fraktaldimension nicht-ganzzahlige Werte annehmen, was bedeutet, dass Fraktale eine zwischen den Dimensionen liegende Struktur besitzen. Ein Beispiel ist die Koch-Kurve, deren Dimension etwa 1,261 beträgt, was darauf hinweist, dass sie komplexer ist als eine einfache Linie, aber weniger komplex als eine Fläche.
Die Fraktaldimension wird häufig mit der Box-Counting-Methode berechnet, bei der die Anzahl der Boxen, die benötigt werden, um ein Fraktal abzudecken, in Abhängigkeit von der Größe der Boxen gezählt wird. Diese Dimension ist besonders nützlich in verschiedenen Disziplinen, einschließlich der Physik, Biologie und Finanzwissenschaften, um Phänomene zu beschreiben, die nicht-linear und selbstähnlich sind.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.