StudierendeLehrende

Fresnel Equations

Die Fresnel-Gleichungen beschreiben, wie Licht an der Grenzfläche zwischen zwei unterschiedlichen Medien reflektiert und gebrochen wird. Sie sind von entscheidender Bedeutung für das Verständnis optischer Phänomene und finden Anwendung in Bereichen wie der Optik, Photonik und Materialwissenschaft. Die Gleichungen berücksichtigen die Polarisation des Lichts und unterscheiden zwischen s- und p-polarisiertem Licht. Die reflektierte und die transmittierte Lichtintensität können durch die folgenden Formeln ausgedrückt werden:

Für die Reflexion:

Rs=∣n1cos⁡(θi)−n2cos⁡(θt)n1cos⁡(θi)+n2cos⁡(θt)∣2R_s = \left| \frac{n_1 \cos(\theta_i) - n_2 \cos(\theta_t)}{n_1 \cos(\theta_i) + n_2 \cos(\theta_t)} \right|^2Rs​=​n1​cos(θi​)+n2​cos(θt​)n1​cos(θi​)−n2​cos(θt​)​​2 Rp=∣n2cos⁡(θi)−n1cos⁡(θt)n2cos⁡(θi)+n1cos⁡(θt)∣2R_p = \left| \frac{n_2 \cos(\theta_i) - n_1 \cos(\theta_t)}{n_2 \cos(\theta_i) + n_1 \cos(\theta_t)} \right|^2Rp​=​n2​cos(θi​)+n1​cos(θt​)n2​cos(θi​)−n1​cos(θt​)​​2

Und für die Transmission:

Ts=1−RsT_s = 1 - R_sTs​=1−Rs​ Tp=1−RpT_p = 1 - R_pTp​=1−Rp​

Hierbei sind n1n_1n1​ und n2n_2n2​ die Brechungsindices der beiden Medien, $ \theta_i

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Jordan-Normalform-Berechnung

Die Jordan-Normalform ist eine spezielle Form einer Matrix, die in der linearen Algebra verwendet wird, um die Struktur von linearen Abbildungen zu untersuchen. Eine Matrix AAA kann in die Jordan-Normalform JJJ überführt werden, die aus Jordan-Blöcken besteht, wobei jeder Block einem Eigenwert von AAA entspricht. Die Berechnung der Jordan-Normalform erfolgt in mehreren Schritten:

  1. Eigenwerte finden: Zuerst bestimmt man die Eigenwerte der Matrix AAA durch Lösen der charakteristischen Gleichung det⁡(A−λI)=0\det(A - \lambda I) = 0det(A−λI)=0.
  2. Eigenvektoren berechnen: Für jeden Eigenwert λ\lambdaλ berechnet man die Eigenvektoren und die zugehörigen Häufigkeiten.
  3. Generalisierten Eigenvektoren: Wenn die algebraische Vielfachheit eines Eigenwerts größer ist als die geometrische Vielfachheit, müssen auch die generalisierten Eigenvektoren berechnet werden.
  4. Jordan-Blöcke erstellen: Basierend auf den Eigenvektoren und den generalisierten Eigenvektoren werden die Jordan-Blöcke erstellt. Diese Blöcke bestehen aus der Hauptdiagonalen, die den Eigenwert enthält, und Einsen auf der Superdiagonalen.

Die resultierende Jordan-Normalform JJJ

Rayleigh-Kriterium

Das Rayleigh-Kriterium ist ein fundamentales Konzept in der Optik, das die Auflösungsfähigkeit von optischen Systemen, wie beispielsweise Teleskopen oder Mikroskopen, beschreibt. Es definiert die minimale Winkeltrennung θ\thetaθ, bei der zwei Lichtquellen als getrennt wahrgenommen werden können. Nach diesem Kriterium gilt, dass die Quellen als getrennt erkannt werden, wenn der zentrale Maximalwert des Beugungsmusters einer Quelle mit dem ersten Minimum des Beugungsmusters der anderen Quelle übereinstimmt.

Mathematisch wird das Rayleigh-Kriterium durch die folgende Beziehung ausgedrückt:

θ=1.22λD\theta = 1.22 \frac{\lambda}{D}θ=1.22Dλ​

Hierbei ist λ\lambdaλ die Wellenlänge des Lichtes und DDD der Durchmesser der Apertur (z.B. des Objektivs). Ein größerer Durchmesser führt zu einer besseren Auflösung, während eine kürzere Wellenlänge ebenfalls die Auflösungsfähigkeit verbessert. Dies ist besonders wichtig in der Astronomie, wo die Beurteilung der Auflösung von Teleskopen entscheidend für die Beobachtung von fernen Sternen und Galaxien ist.

Convex-Hüllentrick

Der Convex Hull Trick ist ein Algorithmus, der in der algorithmischen Geometrie und der dynamischen Programmierung verwendet wird, um optimale Lösungen für Probleme zu finden, die mit einer Menge linearer Funktionen zusammenhängen. Er ermöglicht es, die optimale Linie aus einer Menge von Linien, die in einem 2D-Koordinatensystem dargestellt werden, effizient zu bestimmen. Der Trick basiert auf der Idee, dass die beste Lösung für ein gegebenes xxx durch die konvexe Hülle der Linien in diesem Punkt bestimmt wird.

Der Algorithmus kann in zwei Phasen unterteilt werden: Hinzufügen von Linien zur Hülle und Abfragen der optimalen Linie für einen bestimmten Punkt xxx. Während der Hinzufügung werden nur Linien behalten, die potenziell die optimale Lösung für zukünftige Abfragen bieten, während nicht optimale Linien entfernt werden. Die Abfrage selbst erfolgt in logarithmischer Zeit, was den Convex Hull Trick besonders effizient macht, wenn viele Abfragen in einem gegebenen Bereich durchgeführt werden müssen.

Treap-Datenstruktur

Ein Treap ist eine hybride Datenstruktur, die die Eigenschaften von Binärbäumen und Heaps kombiniert. In einem Treap wird jeder Knoten durch einen Schlüssel und eine zufällig zugewiesene Priorität definiert. Die Schlüssel werden so angeordnet, dass die Eigenschaften eines Binärsuchbaums (BST) erfüllt sind: Für jeden Knoten ist der Schlüssel des linken Kindes kleiner und der Schlüssel des rechten Kindes größer. Gleichzeitig wird die Priorität so angeordnet, dass die Eigenschaften eines Max-Heap erfüllt sind: Die Priorität eines Knotens ist immer größer oder gleich der Prioritäten seiner Kinder.

Diese Struktur ermöglicht eine effiziente Durchführung von Operationen wie Einfügen, Löschen und Suchen in durchschnittlicher Zeitkomplexität von O(log⁡n)O(\log n)O(logn). Ein großer Vorteil von Treaps ist, dass sie durch die zufällige Priorität eine ausgeglichene Struktur garantieren, was die Worst-Case-Leistung verbessert. Die Implementierung eines Treaps ist einfach und benötigt nur grundlegende Kenntnisse über Baumstrukturen und Heaps.

Baryogenese-Mechanismen

Baryogenese bezieht sich auf die Prozesse, die während des frühen Universums zur Entstehung von Baryonen, also Materieteilchen wie Protonen und Neutronen, führten. Diese Mechanismen sind von entscheidender Bedeutung, um das beobachtete Ungleichgewicht zwischen Materie und Antimaterie zu erklären, da die Theorie besagt, dass im Urknall gleich viele Teilchen und Antiteilchen erzeugt wurden. Zu den Hauptmechanismen der Baryogenese gehören:

  • Electroweak Baryogenesis: Hierbei sind die Wechselwirkungen der elektroweak Theorie entscheidend, und die Asymmetrie entsteht durch Verletzungen der CP-Symmetrie.
  • Leptogene Baryogenesis: In diesem Ansatz wird eine Asymmetrie in der Anzahl der Leptonen erzeugt, die dann über sphaleronische Prozesse in eine Baryonenasymmetrie umgewandelt wird.
  • Affleck-Dine Mechanismus: Dieser Mechanismus beschreibt, wie scalar Felder während der Inflation eine Baryonenasymmetrie erzeugen können.

Diese Mechanismen sind theoretische Modelle, die darauf abzielen, die beobachteten Verhältnisse von Materie und Antimaterie im Universum zu erklären und stehen im Zentrum der modernen Kosmologie und Teilchenphysik.

Makroprudenzielle Politik

Die makroprudenzielle Politik bezieht sich auf regulatorische Maßnahmen, die darauf abzielen, die Stabilität des gesamten Finanzsystems zu gewährleisten und systemische Risiken zu minimieren. Im Gegensatz zur mikroprudenziellen Politik, die sich auf einzelne Finanzinstitute konzentriert, zielt die makroprudenzielle Politik darauf ab, Wechselwirkungen zwischen verschiedenen Akteuren und Märkten zu berücksichtigen. Zu den wesentlichen Instrumenten gehören unter anderem:

  • Kapitalpuffer: Banken werden verpflichtet, zusätzliche Kapitalreserven zu halten, um während wirtschaftlicher Abschwünge widerstandsfähiger zu sein.
  • Verschuldungsgrenzen: Begrenzung der Kreditvergabe, um übermäßige Schuldenansammlungen zu vermeiden.
  • Stress-Tests: Regelmäßige Simulationen, um die Fähigkeit von Banken zu prüfen, in Krisenzeiten stabil zu bleiben.

Durch diese Maßnahmen wird versucht, Finanzblasen zu verhindern und die Auswirkungen von wirtschaftlichen Schocks auf das Finanzsystem zu minimieren, was letztlich zu einer stabileren Wirtschaft führen soll.