StudierendeLehrende

Neural Odes

Neural ODEs (Neural Ordinary Differential Equations) sind ein innovativer Ansatz in der maschinellen Lerntechnik, der die Konzepte von neuronalen Netzen und Differentialgleichungen kombiniert. Sie ermöglichen es, kontinuierliche zeitliche Entwicklungen von Daten zu modellieren, indem sie das Verhalten eines Systems als Differentialgleichung beschreiben. Anstatt wie herkömmliche neuronale Netze diskrete Schichten zu verwenden, lernen Neural ODEs eine dynamische Transformation der Eingabedaten über die Zeit.

Die grundlegende Idee ist, dass man die Ableitung eines Zustands dz(t)dt=f(z(t),t;θ)\frac{dz(t)}{dt} = f(z(t), t; \theta)dtdz(t)​=f(z(t),t;θ) mit einem neuronalen Netzwerk fff approximiert, wobei z(t)z(t)z(t) der Zustand des Systems zu einem bestimmten Zeitpunkt ttt ist und θ\thetaθ die Parameter des Netzwerks darstellt. Durch die Integration dieser Differentialgleichung kann man den Zustand über die Zeit verfolgen, was besonders nützlich ist für Anwendungen in der Zeitreihenanalyse und in der Physik. Neural ODEs bieten zudem die Möglichkeit, die Modellkomplexität dynamisch zu steuern, was sie zu einem vielversprechenden Werkzeug für die Datenanalyse und das maschinelle Lernen macht.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Euler-Lagrange

Die Euler-Lagrange-Gleichung ist ein fundamentales Konzept in der Variationsrechnung, das zur Ableitung der Bewegungsgleichungen in der klassischen Mechanik verwendet wird. Sie beschreibt, wie man die Funktion L(q,q˙,t)L(q, \dot{q}, t)L(q,q˙​,t), die als Lagrangian bezeichnet wird, minimieren kann, um die Trajektorien eines Systems zu bestimmen. Hierbei steht qqq für die generalisierten Koordinaten, q˙\dot{q}q˙​ für die Zeitableitung dieser Koordinaten und ttt für die Zeit.

Die allgemeine Form der Euler-Lagrange-Gleichung lautet:

ddt(∂L∂q˙)−∂L∂q=0\frac{d}{dt} \left( \frac{\partial L}{\partial \dot{q}} \right) - \frac{\partial L}{\partial q} = 0dtd​(∂q˙​∂L​)−∂q∂L​=0

Diese Gleichung stellt sicher, dass die Variation der Wirkung S=∫L dtS = \int L \, dtS=∫Ldt extrem ist, was bedeutet, dass die physikalischen Bahnen eines Systems die Extremalwerte der Wirkung annehmen. Die Anwendung der Euler-Lagrange-Gleichung ist ein mächtiges Werkzeug, um die Dynamik komplexer Systeme zu analysieren, insbesondere wenn die Kräfte nicht direkt bekannt sind.

NAIRU-Arbeitslosigkeitstheorie

Die Nairu Unemployment Theory, kurz für "Non-Accelerating Inflation Rate of Unemployment", beschreibt das Konzept eines bestimmten Arbeitslosenquotienten, bei dem die Inflation stabil bleibt. Nairu ist der Punkt, an dem die Arbeitslosigkeit weder ansteigt noch fällt und somit keine zusätzlichen Inflationsdruck erzeugt. Wenn die tatsächliche Arbeitslosenquote unter dem Nairu liegt, tendiert die Inflation dazu, zu steigen, während sie bei einer Arbeitslosenquote über dem Nairu tendenziell sinkt.

Die Nairu-Rate wird von verschiedenen Faktoren beeinflusst, darunter strukturelle und zyklische Arbeitslosigkeit sowie die Anpassungsfähigkeit des Arbeitsmarktes. Es ist wichtig zu beachten, dass der Nairu nicht konstant ist und sich im Laufe der Zeit ändern kann, abhängig von wirtschaftlichen Bedingungen und politischen Maßnahmen. In der Praxis wird Nairu oft verwendet, um geldpolitische Entscheidungen zu leiten, indem Zentralbanken versuchen, die Arbeitslosigkeit um diesen Punkt herum zu steuern, um Inflation zu kontrollieren.

Hahn-Banach-Trennungsatz

Das Hahn-Banach-Trennungs-Theorem ist ein fundamentales Resultat der funktionalen Analysis und der geometrischen Mathematik, das sich mit der Trennung konvexer Mengen befasst. Es besagt, dass zwei nicht überlappende konvexe Mengen in einem normierten Raum durch eine hyperplane (eine affine Hyperebene) getrennt werden können. Genauer gesagt, wenn CCC und DDD zwei nicht leere konvexe Mengen sind, sodass C∩D=∅C \cap D = \emptysetC∩D=∅, gibt es eine lineare Funktional fff und einen Skalar α\alphaα, so dass:

f(x)≤α∀x∈Cundf(y)≥α∀y∈D.f(x) \leq \alpha \quad \forall x \in C \quad \text{und} \quad f(y) \geq \alpha \quad \forall y \in D.f(x)≤α∀x∈Cundf(y)≥α∀y∈D.

Dies bedeutet, dass die Menge CCC auf einer Seite der Hyperplane und die Menge DDD auf der anderen Seite liegt. Das Theorem ist besonders nützlich in der Optimierung und der Spieltheorie, da es ermöglicht, Probleme geometrisch zu formulieren und Lösungen zu finden, indem die Trennbarkeit von Lösungen und Constraints untersucht wird.

Dichtefunktional

Das Dichtefunktional ist ein fundamentales Konzept in der Quantenmechanik, das insbesondere in der elektronischen Strukturtheorie verwendet wird. Es basiert auf der Idee, dass die Eigenschaften eines Systems von vielen Teilchen durch die Elektronendichte ρ(r)\rho(\mathbf{r})ρ(r) an einem bestimmten Punkt r\mathbf{r}r vollständig beschrieben werden können, anstatt durch die Wellenfunktion. Der Vorteil dieser Methode liegt in der Vereinfachung der Berechnungen, da sie die Komplexität der vielen Körperprobleme reduziert.

Die Dichtefunktionaltheorie (DFT) verwendet Funktionale, die von der Elektronendichte abhängen, um die Gesamtenergie eines Systems auszudrücken. Eine allgemeine Formulierung der totalen Energie E[ρ]E[\rho]E[ρ] könnte wie folgt aussehen:

E[ρ]=T[ρ]+V[ρ]+EHartree[ρ]+Exc[ρ]E[\rho] = T[\rho] + V[\rho] + E_{\text{Hartree}}[\rho] + E_{\text{xc}}[\rho]E[ρ]=T[ρ]+V[ρ]+EHartree​[ρ]+Exc​[ρ]

Hierbei steht T[ρ]T[\rho]T[ρ] für die kinetische Energie, V[ρ]V[\rho]V[ρ] für die Wechselwirkung mit externen Potentialen, EHartree[ρ]E_{\text{Hartree}}[\rho]EHartree​[ρ] für die klassischen Coulomb-Wechselwirkungen und Exc[ρ]E_{\text{xc}}[\rho]Exc​[ρ] für die Austausch-Korrelation, die die quantenmechanischen Effekte berücksichtigt. DFT ist besonders nützlich

Jevons-Paradoxon

Das Jevons Paradox beschreibt ein Phänomen, bei dem eine Verbesserung der Energieeffizienz eines bestimmten Produkts oder einer Technologie zu einem Anstieg des Gesamtverbrauchs dieser Ressource führen kann. Ursprünglich formuliert von dem britischen Ökonomen William Stanley Jevons im Jahr 1865, stellte er fest, dass die effizientere Nutzung von Kohle in Dampfmaschinen nicht zu einem Rückgang, sondern zu einem Anstieg des Kohleverbrauchs führte, da niedrigere Kosten und höhere Effizienz zu einem größeren Einsatz führten. Dieses Paradox zeigt, dass Effizienzgewinne nicht zwangsläufig zu einem geringeren Ressourcenverbrauch führen, sondern auch zu einer Steigerung der Nachfrage führen können. Daher ist es wichtig, bei der Entwicklung von Strategien zur Reduzierung des Energieverbrauchs auch die Gesamtwirtschaft und das Verhalten der Verbraucher zu berücksichtigen. Das Jevons Paradox ist besonders relevant im Kontext der Nachhaltigkeit und der Energiepolitik, da es darauf hinweist, dass technologische Fortschritte allein nicht ausreichen, um den Ressourcenverbrauch zu senken, ohne begleitende Maßnahmen zur Regulierung und Bewusstseinsbildung.

Skyrmionen-Gitter

Skyrmion Lattices sind regelmäßige Anordnungen von Skyrmionen, die topologische magnetische Strukturen in bestimmten Materialien bilden. Ein Skyrmion ist ein kleiner, wirbelartiger Zustand, der in magnetischen Materialien auftreten kann und durch seine stabilen Eigenschaften charakterisiert ist. Diese Lattices entstehen häufig in Materialien mit starker Spin-Bahn-Kopplung und können durch externe Felder oder Temperaturänderungen erzeugt werden. Die Stabilität und Dichte der Skyrmionen in diesen Gitterstrukturen ermöglichen eine effiziente Speicherung und Verarbeitung von Informationen, was sie zu einem vielversprechenden Kandidaten für zukünftige Speichertechnologien macht. Die mathematische Beschreibung von Skyrmionen erfolgt oft durch die Verwendung von Spin-Konfigurationen, die in einem bestimmten Raum angeordnet sind, und kann durch topologische Indizes wie den Skyrmionen-Index quantifiziert werden.