StudierendeLehrende

Tobin’S Q

Tobin’s Q ist ein wirtschaftswissenschaftliches Konzept, das das Verhältnis zwischen dem Marktwert eines Unternehmens und den Kosten seiner Vermögenswerte beschreibt. Genauer gesagt wird Tobin’s Q definiert als das Verhältnis des Marktwerts (M) eines Unternehmens zu den Ersetzungskosten (C) seiner Vermögenswerte:

Q=MCQ = \frac{M}{C}Q=CM​

Ein Q-Wert größer als 1 deutet darauf hin, dass der Marktwert des Unternehmens höher ist als die Kosten zur Wiederbeschaffung seiner Vermögenswerte, was Unternehmen dazu anregen könnte, in neue Investitionen zu tätigen. Umgekehrt bedeutet ein Q-Wert unter 1, dass die Investitionskosten die Marktbewertungen übersteigen, was dazu führen kann, dass Unternehmen Investitionen zurückhalten. Tobin’s Q ist somit ein nützliches Werkzeug zur Analyse von Investitionsentscheidungen und zur Bewertung von Unternehmensstrategien in Bezug auf Marktchancen und Ressourcenallokation.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Rückwärtsinduktion

Backward Induction ist eine Methode zur Lösung von Entscheidungsproblemen in der Spieltheorie, insbesondere in dynamischen Spielen mit vollständiger Information. Der Ansatz besteht darin, die Entscheidungen der Spieler von der letzten Runde des Spiels bis zur ersten rückwärts zu analysieren. Dabei wird angenommen, dass die Spieler in jeder Runde rational handeln und ihre Entscheidungen auf der Grundlage der erwarteten Entscheidungen der anderen Spieler treffen.

Um dies zu verdeutlichen, betrachten wir ein einfaches Beispiel mit zwei Spielern, die abwechselnd Entscheidungen treffen. Der Spieler, der zuletzt an der Reihe ist, wählt zuerst die optimale Strategie, und diese Entscheidung beeinflusst die Strategie des vorhergehenden Spielers. Durch das systematische Durcharbeiten der möglichen Ergebnisse und Strategien von hinten nach vorne können die optimalen Strategien für alle Spieler identifiziert werden.

In mathematischen Formulierungen wird oft die Gleichung V(s)=max⁡a∈A(s)R(s,a)+V(s′)V(s) = \max_{a \in A(s)} R(s, a) + V(s')V(s)=maxa∈A(s)​R(s,a)+V(s′) verwendet, wobei V(s)V(s)V(s) den Wert des Spiels in Zustand sss darstellt, A(s)A(s)A(s) die möglichen Aktionen in diesem Zustand und R(s,a)R(s, a)R(s,a) die Belohnung für die gewählte Aktion aaa darstellt.

Dirichlets Approximationstheorem

Das Dirichlet'sche Approximationstheorem ist ein fundamentales Resultat in der Zahlentheorie, das sich mit der Approximation reeller Zahlen durch rationale Zahlen beschäftigt. Es besagt, dass für jede reelle Zahl α\alphaα und jede positive ganze Zahl nnn eine rationale Zahl pq\frac{p}{q}qp​ existiert, so dass die folgende Ungleichung gilt:

∣α−pq∣<1nq2\left| \alpha - \frac{p}{q} \right| < \frac{1}{nq^2}​α−qp​​<nq21​

Dies bedeutet, dass man für jede reelle Zahl α\alphaα und jede gewünschte Genauigkeit 1n\frac{1}{n}n1​ eine rationale Approximation finden kann, deren Nenner nicht zu groß ist. Das Theorem hat weitreichende Anwendungen in der Diophantischen Approximation und der Theorie der irrationalen Zahlen. Es illustriert die Dichte der rationalen Zahlen in den reellen Zahlen und zeigt, dass sie, trotz der Unendlichkeit der reellen Zahlen, immer nahe genug an einer gegebenen reellen Zahl liegen können.

Torus-Einbettungen in der Topologie

Torus-Einbettungen sind ein zentrales Konzept in der Topologie, das sich mit der Darstellung von Torusformen in höherdimensionalen Räumen befasst. Ein Torus ist ein zweidimensionales Objekt, das man sich oft als einen Donut vorstellt und in der Mathematik formal als das Produkt zweier Kreise S1×S1S^1 \times S^1S1×S1 definiert ist. Bei der Einbettung eines Torus in den dreidimensionalen Raum wird untersucht, wie dieser Torus ohne Verzerrung oder Überlappung dargestellt werden kann. Die Herausforderungen bei diesen Einbettungen liegen in der Erhaltung der topologischen Eigenschaften, wie der Genuszahl, und der Vermeidung von Selbstüberschneidungen.

Ein klassisches Beispiel ist die Einbettung eines Torus in R3\mathbb{R}^3R3, was durch die parametrische Gleichung

x(u,v)=(R+r⋅cos⁡(v))⋅cos⁡(u),y(u,v)=(R+r⋅cos⁡(v))⋅sin⁡(u),z(u,v)=r⋅sin⁡(v)\begin{align*} x(u, v) &= (R + r \cdot \cos(v)) \cdot \cos(u), \\ y(u, v) &= (R + r \cdot \cos(v)) \cdot \sin(u), \\ z(u, v) &= r \cdot \sin(v) \end{align*}x(u,v)y(u,v)z(u,v)​=(R+r⋅cos(v))⋅cos(u),=(R+r⋅cos(v))⋅sin(u),=r⋅sin(v)​

dargestellt werden kann, wobei RRR der Abstand vom Toruszentrums zum Mittelpunkt

Supraleitung

Supraleitfähigkeit ist ein physikalisches Phänomen, das bei bestimmten Materialien auftritt, wenn sie unter eine kritische Temperatur abgekühlt werden. In diesem Zustand verlieren die Materialien ihren elektrischen Widerstand und ermöglichen den ungehinderten Fluss von elektrischen Strömen. Dies geschieht, weil Elektronen in einem supraleitenden Material Paare bilden, bekannt als Cooper-Paare, die sich ohne Energieverlust bewegen können.

Ein weiteres bemerkenswertes Merkmal der Supraleitfähigkeit ist der Meissner-Effekt, bei dem ein supraleitendes Material Magnetfelder aus seinem Inneren verdrängt, was zu einem Phänomen führt, das als magnetische Levitation bekannt ist. Supraleitfähigkeit hat viele potenzielle Anwendungen, darunter:

  • Magnetische Schwebebahn (Maglev)
  • Hochleistungs-Elektromagneten in der Medizin (z.B. MRT)
  • Verluste in elektrischen Leitungen minimieren

Die theoretische Beschreibung der Supraleitfähigkeit erfolgt häufig durch die BCS-Theorie (Bardeen-Cooper-Schrieffer), die das Verhalten von Cooper-Paaren und deren Wechselwirkungen erklärt.

Netzwerkeffekte

Network Effects beziehen sich auf den Nutzen, den ein Produkt oder Dienstleistungsangebot erhält, wenn die Anzahl der Nutzer steigt. Bei positiven Network Effects erhöht sich der Wert eines Produkts für alle Nutzer, je mehr Menschen es verwenden; ein klassisches Beispiel ist das Telefon: Je mehr Personen ein Telefon besitzen, desto wertvoller wird es für jeden Einzelnen. Im Gegensatz dazu gibt es auch negative Network Effects, bei denen die Qualität oder der Nutzen eines Dienstes abnimmt, wenn zu viele Nutzer gleichzeitig darauf zugreifen, wie es bei überlasteten Netzwerken der Fall sein kann. Diese Effekte sind entscheidend für die Gestaltung von Geschäftsmodellen in der digitalen Wirtschaft und beeinflussen die Wettbewerbssituation erheblich. Um von Network Effects zu profitieren, müssen Unternehmen oft strategisch wachsen und eine kritische Masse an Nutzern erreichen, um den Wert ihres Angebots exponentiell zu steigern.

Fermi-Dirac

Die Fermi-Dirac-Statistik beschreibt das Verhalten von Teilchen, die als Fermionen klassifiziert werden, wie Elektronen, Protonen und Neutronen. Diese Teilchen unterliegen dem Pauli-Prinzip, das besagt, dass nicht zwei identische Fermionen denselben Quantenzustand einnehmen können. Die Fermi-Dirac-Verteilung gibt die Wahrscheinlichkeit an, dass ein Energieniveau bei einer bestimmten Temperatur besetzt ist, und wird durch die Formel

f(E)=1e(E−μ)/(kT)+1f(E) = \frac{1}{e^{(E - \mu) / (kT)} + 1}f(E)=e(E−μ)/(kT)+11​

definiert, wobei EEE die Energie des Zustands, μ\muμ das chemische Potential, kkk die Boltzmann-Konstante und TTT die Temperatur in Kelvin darstellt. Diese Statistik ist besonders wichtig in der Festkörperphysik, da sie das Verhalten von Elektronen in Metallen und Halbleitern erklärt. Die Fermi-Dirac-Verteilung zeigt, dass bei niedrigen Temperaturen die meisten Zustände mit niedriger Energie besetzt sind, während bei höheren Temperaturen auch höhere Energieniveaus besetzt werden können.