StudierendeLehrende

Boundary Layer Theory

Die Boundary Layer Theory ist ein fundamentales Konzept in der Strömungsmechanik, das sich mit dem Verhalten von Fluiden an festen Oberflächen beschäftigt. Bei der Strömung eines Fluids um ein Objekt, wie z.B. ein Flugzeugflügel, bildet sich an der Oberfläche eine dünne Schicht, die als Grenzschicht bezeichnet wird. In dieser Schicht sind die Geschwindigkeitsgradienten bedeutend, da die Fluidgeschwindigkeit an der Oberfläche aufgrund der viskosen Kräfte auf Null abfällt, während sie sich in der Strömung weiter entfernt vom Objekt erhöht.

Die Theorie erklärt, wie sich die Eigenschaften des Fluids innerhalb dieser Grenzschicht von den Eigenschaften des umgebenden, ungestörten Fluids unterscheiden. Ein wichtiges Ergebnis der Boundary Layer Theory ist, dass die Reibung und der Widerstand eines Objekts, das sich durch ein Fluid bewegt, stark von der Dicke und dem Verhalten dieser Grenzschicht abhängen. Mathematisch wird die Grenzschicht oft durch die Navier-Stokes-Gleichungen beschrieben, die die Bewegung von Fluiden unter Berücksichtigung von Viskosität und anderen Kräften definieren.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Black-Scholes-Optionspreismodell-Derivation

Die Black-Scholes-Formel ist ein fundamentales Modell zur Bewertung von Optionen, das auf bestimmten Annahmen über die Preisbewegungen von Aktien basiert. Die Ableitung beginnt mit der Annahme, dass die Preise von Aktien einem geometrischen Brownians Prozess folgen, was bedeutet, dass die logarithmischen Renditen normalverteilt sind. Der Preis einer europäischen Call-Option kann dann durch die Risiko-Neutralität und die Martingal-Theorie abgeleitet werden.

Um die Option zu bewerten, wird zunächst ein Portfolio aus der Option und der zugrunde liegenden Aktie erstellt, das risikofrei ist. Mithilfe der Itô-Kalkül wird die zeitliche Veränderung des Portfoliowertes betrachtet, was zu einer partiellen differentialgleichung führt. Schließlich ergibt sich die Black-Scholes-Formel, die für eine europäische Call-Option wie folgt aussieht:

C(S,t)=SN(d1)−Ke−r(T−t)N(d2)C(S, t) = S N(d_1) - K e^{-r(T-t)} N(d_2)C(S,t)=SN(d1​)−Ke−r(T−t)N(d2​)

Hierbei sind N(d1)N(d_1)N(d1​) und N(d2)N(d_2)N(d2​) die Werte der kumulativen Normalverteilung, SSS der aktuelle Aktienkurs, KKK der Ausübungspreis, rrr der risikofreie Zinssatz und $ T-t

Hessische Matrix

Die Hessische Matrix ist eine quadratische Matrix, die die zweiten Ableitungen einer multivariablen Funktion enthält. Sie ist besonders wichtig in der Optimierung und der Differentialgeometrie, da sie Informationen über die Krümmung der Funktion liefert. Für eine Funktion f:Rn→Rf: \mathbb{R}^n \to \mathbb{R}f:Rn→R ist die Hessische Matrix definiert als:

H(f)=[∂2f∂x12∂2f∂x1∂x2⋯∂2f∂x1∂xn∂2f∂x2∂x1∂2f∂x22⋯∂2f∂x2∂xn⋮⋮⋱⋮∂2f∂xn∂x1∂2f∂xn∂x2⋯∂2f∂xn2]H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix} H(f)=​∂x12​∂2f​∂x2​∂x1​∂2f​⋮∂xn​∂x1​∂2f​​∂x1​∂x2​∂2f​∂x22​∂2f​⋮∂xn​∂x2​∂2f​​⋯⋯⋱⋯​∂x1​∂xn​∂2f​∂x2​∂xn​∂2f​⋮∂xn2​∂2f​​​

Tiefe Hirnstimulationstherapie

Die Deep Brain Stimulation Therapy (DBS) ist eine neuromodulatorische Behandlung, die bei verschiedenen neurologischen Erkrankungen eingesetzt wird, insbesondere bei Parkinson-Krankheit, Dystonie und Tourette-Syndrom. Bei dieser Methode werden Elektroden in bestimmte Bereiche des Gehirns implantiert, um elektrische Impulse zu erzeugen, die die neuronale Aktivität modulieren. Diese Impulse können Symptome wie Zittern, Steifheit und Bewegungsstörungen signifikant verringern. Der Eingriff erfolgt in der Regel minimalinvasiv und bedarf einer sorgfältigen Planung, um die optimalen Zielregionen im Gehirn zu identifizieren. Die Therapie wird oft als sicher und effektiv angesehen, birgt jedoch auch Risiken wie Infektionen oder neurologische Komplikationen. Somit stellt die DBS eine vielversprechende Option dar, um die Lebensqualität von Patienten mit schwerwiegenden Bewegungsstörungen zu verbessern.

Ferroelectric Domain Switching

Ferroelectric Domain Switching bezieht sich auf den Prozess, bei dem sich die Ausrichtung der elektrischen Dipole innerhalb eines ferroelectric Materials ändert. In ferroelectric Materialien existieren verschiedene Domänen, die jeweils eine bevorzugte Richtung der elektrischen Polarisation aufweisen. Durch Anlegen eines externen elektrischen Feldes kann die Polarisation in einer bestimmten Domäne umgeschaltet werden, was zu einer Umkehrung der Dipolrichtung führt. Dieser Prozess ist entscheidend für die Funktion von ferroelectricen Materialien in Anwendungen wie Speichern von Informationen, Sensoren und Aktuatoren. Die Effizienz des Domain Switching hängt von verschiedenen Faktoren ab, einschließlich der Materialstruktur und der Stärke des angelegten elektrischen Feldes. Mathematisch kann dieser Prozess durch die Beziehung zwischen dem äußeren elektrischen Feld EEE und der Polarisation PPP beschrieben werden, wobei die Änderung der Polarisation proportional zum angelegten Feld ist:

ΔP=ϵ⋅E\Delta P = \epsilon \cdot EΔP=ϵ⋅E

wobei ϵ\epsilonϵ die dielektrische Suszeptibilität des Materials darstellt.

Groebner Basis

Bézout’s Identität ist ein fundamentales Konzept in der Zahlentheorie, das besagt, dass für zwei ganze Zahlen aaa und bbb mit dem größten gemeinsamen Teiler (ggT) ddd eine lineare Kombination dieser Zahlen existiert, die ddd ergibt. Mathematisch ausgedrückt bedeutet dies, dass es ganze Zahlen xxx und yyy gibt, sodass:

d=ax+byd = ax + byd=ax+by

Hierbei ist d=ggT(a,b)d = \text{ggT}(a, b)d=ggT(a,b). Diese Identität ist besonders nützlich in der Algebra und in der Lösung von Diophantischen Gleichungen. Ein praktisches Beispiel wäre, wenn a=30a = 30a=30 und b=12b = 12b=12, dann ist ggT(30,12)=6\text{ggT}(30, 12) = 6ggT(30,12)=6 und es gibt ganze Zahlen xxx und yyy, die die Gleichung 6=30x+12y6 = 30x + 12y6=30x+12y erfüllen. Bézout’s Identität zeigt somit die enge Beziehung zwischen den ggT und den Koeffizienten der linearen Kombination.

Symmetrie unter Eichtransformationen

Gauge Invariance ist ein fundamentales Konzept in der theoretischen Physik, das besagt, dass die Beschreibung eines physikalischen Systems unabhängig von bestimmten Wahlfreiheiten, den sogenannten Gauge-Freiheiten, ist. Dies bedeutet, dass verschiedene mathematische Darstellungen eines physikalischen Systems, die durch eine geeignete Transformation verbunden sind, zu den gleichen physikalischen Vorhersagen führen. Zum Beispiel in der Elektrodynamik ist die Wahl des potenziellen Feldes, das zur Beschreibung des elektrischen und magnetischen Feldes verwendet wird, eine Gauge-Freiheit.

Mathematisch lässt sich dies oft durch die Transformation eines Feldes ϕ\phiϕ darstellen, wobei die physikalischen Gesetze in der Form invariant bleiben:

ϕ′=ϕ+f(x)\phi' = \phi + f(x)ϕ′=ϕ+f(x)

Hierbei ist f(x)f(x)f(x) eine beliebige Funktion der Raum-Zeit-Koordinaten. Gauge Invariance spielt eine zentrale Rolle in der Quantenfeldtheorie und ist entscheidend für die Entwicklung der Standardmodelle der Teilchenphysik, da sie die Erhaltung von Energie, Impuls und anderen physikalischen Größen sichert.