StudierendeLehrende

Ucb Algorithm In Multi-Armed Bandits

Der UCB-Algorithmus (Upper Confidence Bound) ist eine effektive Strategie zur Lösung des Multi-Armed Bandit-Problems, das in der Entscheidungsfindung und im maschinellen Lernen häufig vorkommt. Bei diesem Problem steht ein Agent vor der Wahl, aus mehreren Optionen (Armen) zu wählen, wobei jede Option eine unbekannte Belohnungsverteilung hat. Der UCB-Algorithmus verfolgt einen explorativen Ansatz, indem er sowohl die mittlere Belohnung jeder Option als auch die Unsicherheit über diese Schätzungen berücksichtigt.

Die zentrale Idee des UCB-Algorithmus besteht darin, eine obere Schranke für die geschätzte Belohnung jeder Option zu berechnen, die sowohl die bisherige Leistung als auch die Anzahl der Male, die die Option gewählt wurde, einbezieht. Diese Schranke wird wie folgt definiert:

UCBt(a)=X^t(a)+2ln⁡tNt(a)UCB_t(a) = \hat{X}_t(a) + \sqrt{\frac{2 \ln t}{N_t(a)}}UCBt​(a)=X^t​(a)+Nt​(a)2lnt​​

Hierbei ist X^t(a)\hat{X}_t(a)X^t​(a) die geschätzte durchschnittliche Belohnung der Option aaa zum Zeitpunkt ttt, Nt(a)N_t(a)Nt​(a) die Anzahl der Ziehungen von Option aaa, und ln⁡t\ln tlnt der natürliche Logarithmus von ttt. Der Agent wählt dann

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Einzelzell-Proteomik

Single-Cell Proteomics ist ein innovativer Forschungsansatz, der sich mit der Analyse von Proteinen auf der Ebene einzelner Zellen beschäftigt. Diese Methode ermöglicht es Wissenschaftlern, die Proteinzusammensetzung und -expression innerhalb von Zellen zu untersuchen, was besonders wichtig ist, um heterogene Zellpopulationen zu verstehen, wie sie beispielsweise in Tumoren oder im Immunsystem vorkommen. Durch den Einsatz fortschrittlicher Technologien wie Massenspektrometrie und mikrofluidischer Systeme können Forscher spezifische Proteine identifizieren und quantifizieren, ohne dass die Homogenität von Zellpopulationen wie in traditionellen Ansätzen verloren geht.

Die Herausforderungen in der Single-Cell Proteomics umfassen die Notwendigkeit, empfindliche und präzise Techniken zu entwickeln, um die oft geringen Proteinmengen in einzelnen Zellen zu messen. Zudem ist die Datenanalyse komplex, da große Mengen an Informationen verarbeitet und interpretiert werden müssen. Insgesamt bietet dieser Ansatz wertvolle Einblicke in zelluläre Prozesse und deren Variation, was für die Entwicklung neuer Therapien und diagnostischer Methoden von großer Bedeutung ist.

Edmonds-Karp-Algorithmus

Der Edmonds-Karp Algorithmus ist ein spezifischer Implementierungsansatz des Ford-Fulkerson-Algorithmus zur Lösung des Maximum-Flow-Problems in Flussnetzwerken. Er verwendet die Breitensuche (BFS), um den maximalen Fluss von einer Quelle zu einer Senke zu finden, indem er wiederholt nach augmentierenden Pfaden sucht. Diese Pfade sind solche, die noch über Kapazitäten verfügen, um den Fluss zu erhöhen. Der Algorithmus hat eine Zeitkomplexität von O(V⋅E2)O(V \cdot E^2)O(V⋅E2), wobei VVV die Anzahl der Knoten und EEE die Anzahl der Kanten im Netzwerk darstellt. Bei jedem Schritt wird der Fluss entlang des gefundenen Pfades erhöht, bis kein weiterer augmentierender Pfad mehr gefunden werden kann. Damit bietet der Edmonds-Karp Algorithmus eine effiziente Methode zur Bestimmung des maximalen Flusses in einem Netzwerk.

Black-Scholes-Optionspreismodell-Derivation

Die Black-Scholes-Formel ist ein fundamentales Modell zur Bewertung von Optionen, das auf bestimmten Annahmen über die Preisbewegungen von Aktien basiert. Die Ableitung beginnt mit der Annahme, dass die Preise von Aktien einem geometrischen Brownians Prozess folgen, was bedeutet, dass die logarithmischen Renditen normalverteilt sind. Der Preis einer europäischen Call-Option kann dann durch die Risiko-Neutralität und die Martingal-Theorie abgeleitet werden.

Um die Option zu bewerten, wird zunächst ein Portfolio aus der Option und der zugrunde liegenden Aktie erstellt, das risikofrei ist. Mithilfe der Itô-Kalkül wird die zeitliche Veränderung des Portfoliowertes betrachtet, was zu einer partiellen differentialgleichung führt. Schließlich ergibt sich die Black-Scholes-Formel, die für eine europäische Call-Option wie folgt aussieht:

C(S,t)=SN(d1)−Ke−r(T−t)N(d2)C(S, t) = S N(d_1) - K e^{-r(T-t)} N(d_2)C(S,t)=SN(d1​)−Ke−r(T−t)N(d2​)

Hierbei sind N(d1)N(d_1)N(d1​) und N(d2)N(d_2)N(d2​) die Werte der kumulativen Normalverteilung, SSS der aktuelle Aktienkurs, KKK der Ausübungspreis, rrr der risikofreie Zinssatz und $ T-t

Reynolds-Averaging

Reynolds Averaging ist ein Verfahren zur Analyse turbulenter Strömungen, das von Osbourne Reynolds eingeführt wurde. Es basiert auf der Idee, dass turbulente Strömungen aus einem zeitlich gemittelten Teil und einem schwankenden Teil bestehen. Mathematisch wird dies durch die Zerlegung der Strömungsgrößen, wie Geschwindigkeit u\mathbf{u}u, in einen Mittelwert u‾\overline{\mathbf{u}}u und eine Fluktuation u′\mathbf{u}'u′ dargestellt, sodass gilt:

u=u‾+u′\mathbf{u} = \overline{\mathbf{u}} + \mathbf{u}'u=u+u′

Durch diese Zerlegung können die komplexen und chaotischen Eigenschaften turbulenter Strömungen in einfacher zu behandelnde Durchschnittswerte umgewandelt werden. Reynolds Averaging führt zur sogenannten Reynolds-gleichgewichtsgleichung, die zusätzliche Terme, sogenannte Reynolds-Stress-Terme, einführt, um die Wechselwirkungen zwischen den Fluktuationen zu berücksichtigen. Diese Methode ist besonders nützlich in der Strömungsmechanik und der Aerodynamik, da sie die Berechnung von Strömungsfeldern in komplexen Geometrien und unter verschiedenen Randbedingungen erleichtert.

AVL-Bäume

AVL-Bäume sind eine spezielle Art von selbstbalancierenden binären Suchbäumen, die von den Mathematikern Georgy Adelson-Velsky und Evgenii Landis im Jahr 1962 eingeführt wurden. Sie garantieren, dass die Höhe des linken und rechten Teilbaums eines Knotens sich um höchstens 1 unterscheidet, um eine effiziente Suchzeit zu gewährleisten. Diese Eigenschaft wird als AVL-Bedingung bezeichnet und sorgt dafür, dass die maximale Höhe hhh eines AVL-Baums mit nnn Knoten durch die Formel h≤1.44log⁡(n+2)−0.328h \leq 1.44 \log(n + 2) - 0.328h≤1.44log(n+2)−0.328 begrenzt ist.

Um die Balance nach Einfüge- oder Löschoperationen aufrechtzuerhalten, können Rotationen (einzeln oder doppelt) durchgeführt werden. AVL-Bäume sind besonders nützlich in Anwendungen, bei denen häufige Suchoperationen erforderlich sind, da sie im Durchschnitt eine Zeitkomplexität von O(log⁡n)O(\log n)O(logn) für Suche, Einfügen und Löschen bieten.

Hotellings Regel nicht erneuerbare Ressourcen

Hotelling's Regel beschreibt, wie der Preis von nicht erneuerbaren Ressourcen, wie Öl oder Erdgas, im Laufe der Zeit steigen sollte, um den Wert dieser Ressourcen zu maximieren. Die Grundannahme ist, dass der Preis einer nicht erneuerbaren Ressource im Zeitverlauf mit dem Zinssatz des Kapitals wachsen sollte, was bedeutet, dass der zukünftige Preis der Ressource höher ist als der aktuelle Preis. Dies führt zu der Erkenntnis, dass die Ausbeutung der Ressource über die Zeit hinweg so gesteuert werden sollte, dass die Knappheit der Ressource ihre zukünftige Verfügbarkeit und den damit verbundenen Preis berücksichtigt.

Die Regel lässt sich mathematisch ausdrücken: Wenn P(t)P(t)P(t) der Preis der Ressource zu einem Zeitpunkt ttt ist, sollte gelten:

dP(t)dt=r⋅P(t)\frac{dP(t)}{dt} = r \cdot P(t)dtdP(t)​=r⋅P(t)

wobei rrr der Zinssatz ist. Diese Dynamik hat wichtige Implikationen für die Planung und das Management von Ressourcen, da sie die Notwendigkeit betont, die Ausbeutung nicht erneuerbarer Ressourcen nachhaltig zu gestalten, um langfristig wirtschaftliche Vorteile zu sichern.