H-Infinity Robust Control

H-Infinity Robust Control ist ein Ansatz zur Regelungstechnik, der sich auf die Entwicklung von Regelungssystemen konzentriert, die gegenüber Unsicherheiten und Störungen in dynamischen Systemen robust sind. Der Hauptfokus liegt auf der Minimierung des maximalen Einflusses der Störungen auf das System, was mathematisch durch die Minimierung einer speziellen Norm, der HH_\infty-Norm, erreicht wird. Dies bedeutet, dass der Regler so gestaltet wird, dass er die worst-case Auswirkungen von Unsicherheiten, wie Modellfehler oder äußere Störungen, berücksichtigt.

Ein typisches Ziel im H-Infinity Ansatz ist es, eine Übertragungsfunktion T(s)T(s) zu finden, die die Beziehung zwischen Eingangs- und Ausgangssignalen des Systems beschreibt und gleichzeitig die Bedingung erfüllt:

TH<γ\| T \|_{H_\infty} < \gamma

wobei γ\gamma eine vorgegebene Schranke darstellt. Der Vorteil des H-Infinity Ansatzes liegt in seiner Fähigkeit, die Stabilität und Leistung des Regelungssystems auch unter ungünstigen Bedingungen zu gewährleisten, wodurch er in vielen Anwendungen in der Luftfahrt, Robotik und Automobiltechnik weit verbreitet ist.

Weitere verwandte Begriffe

Hamming-Distanz

Die Hamming-Distanz ist ein Maß für die Differenz zwischen zwei gleich langen Zeichenfolgen, typischerweise in Form von Binärzahlen oder Strings. Sie wird definiert als die Anzahl der Positionen, an denen die entsprechenden Symbole unterschiedlich sind. Zum Beispiel haben die Binärzahlen 10110011011001 und 10010111001011 eine Hamming-Distanz von 3, da sie an den Positionen 2, 4 und 6 unterschiedlich sind.

Die Hamming-Distanz wird häufig in der Informatik, insbesondere in der Codierungstheorie, verwendet, um Fehler in Datenübertragungen zu erkennen und zu korrigieren. Sie ist auch nützlich in Anwendungen wie der genetischen Forschung, um Unterschiede zwischen DNA-Sequenzen zu quantifizieren. In der Praxis gilt: Je höher die Hamming-Distanz zwischen zwei Codes, desto robuster ist das System gegen Fehler.

New Keynesian Sticky Prices

Die Theorie der New Keynesian Sticky Prices beschreibt, wie Preise in einer Volkswirtschaft nicht sofort auf Veränderungen der Nachfrage oder Kosten reagieren, was zu einer Verzögerung in der Anpassung führt. Diese Preisklebrigkeit entsteht oft aufgrund von Faktoren wie Menü-Kosten, also den Kosten, die Unternehmen tragen müssen, um ihre Preise anzupassen, sowie durch langfristige Verträge und Preissetzungsstrategien. In diesem Modell können Unternehmen ihre Preise nur in bestimmten Intervallen ändern, was bedeutet, dass sie kurzfristig nicht in der Lage sind, auf wirtschaftliche Schocks zu reagieren.

Die New Keynesian Theorie betont die Bedeutung dieser Preisklebrigkeit für die Geldpolitik, da sie erklärt, warum eine expansive Geldpolitik in Zeiten von wirtschaftlichen Abschwüngen zu einer Erhöhung der Produktion und Beschäftigung führen kann. Mathematisch lässt sich dies oft durch die Gleichung der aggregierten Nachfrage darstellen, die zeigt, wie die realen Preise von den nominalen Preisen abweichen können. In einem solchen Kontext wird die Rolle der Zentralbank entscheidend, um durch geldpolitische Maßnahmen die Wirtschaft zu stabilisieren.

DNA-Methylierung

DNA-Methylierung ist ein biologischer Prozess, bei dem Methylgruppen (-CH₃) an die DNA-Moleküle gebunden werden, insbesondere an das Cytosin in der CpG-Dinukleotidsequenz. Diese chemische Modifikation beeinflusst die Genexpression, indem sie die Bindung von Transkriptionsfaktoren und anderen regulatorischen Proteinen an die DNA hemmt. Methylierung kann somit als eine Art epigenetische Markierung betrachtet werden, die nicht die DNA-Sequenz selbst verändert, sondern die Art und Weise, wie Gene aktiviert oder deaktiviert werden.

Die Methylierungsmuster variieren zwischen verschiedenen Zelltypen und können durch Umweltfaktoren, Ernährung und Lebensstil beeinflusst werden. Eine aberrante Methylierung wird mit verschiedenen Krankheiten, einschließlich Krebs, in Verbindung gebracht, da sie zur Aktivierung von Onkogenen oder zur Inaktivierung von Tumorsuppressorgenen führen kann. Insgesamt spielt die DNA-Methylierung eine entscheidende Rolle in der Genregulation und der Entwicklung von Organismen.

Stackelberg-Wettbewerb Führer-Vorteil

Der Stackelberg-Wettbewerb ist ein Modell der oligopolistischen Marktstruktur, in dem Unternehmen strategisch Entscheidungen über Preis und Menge treffen. In diesem Modell hat der Leader, das Unternehmen, das zuerst seine Produktionsmenge festlegt, einen entscheidenden Vorteil gegenüber dem Follower, also dem Unternehmen, das seine Entscheidungen danach trifft. Dieser Vorteil entsteht, weil der Leader seine Produktionsmenge so wählen kann, dass er die Reaktionen des Followers antizipiert und somit seine eigene Marktposition optimiert.

Der Leader maximiert seinen Gewinn unter Berücksichtigung der Reaktionsfunktion des Followers, was bedeutet, dass er nicht nur seine eigenen Kosten und Preise, sondern auch die potenziellen Reaktionen des Followers in seine Entscheidungen einbezieht. Mathematisch kann dies durch die Maximierung der Gewinnfunktion des Leaders unter der Berücksichtigung der Reaktionsfunktion des Followers dargestellt werden. Dies führt oft zu einem höheren Marktanteil und höheren Profiten für den Leader im Vergleich zum Follower.

Überschüssige Fluide

Supercritical Fluids sind Zustände von Materie, die bei bestimmten Druck- und Temperaturbedingungen entstehen, wenn ein Fluid über seine kritische Temperatur und seinen kritischen Druck hinaus erhitzt wird. In diesem Zustand zeigen die Flüssigkeit und das Gas die Eigenschaften beider Phasen, was zu einzigartigen Löslichkeitseigenschaften führt. Zum Beispiel können superkritische Fluide wie superkritisches Kohlendioxid als lösungsmittelähnlich betrachtet werden, während sie gleichzeitig die Diffusionseigenschaften von Gasen besitzen.

Die Anwendung von superkritischen Fluiden umfasst Bereiche wie die Extraktion von Pflanzenstoffen, die chemische Synthese und die Reinigung von Materialien. Ein bekanntes Beispiel ist die Verwendung von superkritischem CO₂ in der Kaffee-Entkoffeinierung, wo die Eigenschaften des Fluids es ermöglichen, Koffein selektiv zu extrahieren. Die Vorteile dieser Technologie liegen in der Umweltfreundlichkeit und der Effizienz des Prozesses, da keine schädlichen Lösungsmittel benötigt werden.

Mertenssche Funktion Wachstum

Die Mertenssche Funktion M(n)M(n) ist definiert als die Summe der reziproken Primzahlen bis zu nn, also:

M(n)=pn1pM(n) = \sum_{p \leq n} \frac{1}{p}

wobei pp eine Primzahl ist. Das Wachstum von M(n)M(n) ist von besonderem Interesse in der Zahlentheorie, da es wichtige Informationen über die Verteilung der Primzahlen liefert. Die Mertenssche Funktion wächst ungefähr wie log(log(n))\log(\log(n)), was bedeutet, dass es sich um ein langsames Wachstum handelt. Ein wesentliches Ergebnis in diesem Zusammenhang ist die Mertenssche Vermutung, die besagt, dass M(n)M(n) nicht zu schnell wächst, was auf eine gewisse Regelmäßigkeit in der Verteilung der Primzahlen hindeutet. Diese Erkenntnisse haben bedeutende Implikationen für die Riemannsche Vermutung und das Verständnis der Primzahlverteilung insgesamt.

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.