StudierendeLehrende

Protein Folding Algorithms

Protein Folding Algorithms sind computational Methods, die entwickelt wurden, um die dreidimensionale Struktur von Proteinen aus ihrer linearen Aminosäuresequenz vorherzusagen. Die Faltung von Proteinen ist ein komplexer Prozess, der durch Wechselwirkungen zwischen den Aminosäuren bestimmt wird, und das Ziel dieser Algorithmen ist es, die energetisch günstigste Konformation zu finden. Es gibt verschiedene Ansätze, um dieses Problem zu lösen, darunter:

  • Molekulardynamik: Simuliert die Bewegung von Atomen über die Zeit.
  • Monte-Carlo-Methoden: Nutzt Zufallstechniken, um mögliche Faltungen zu erkunden.
  • Künstliche Intelligenz: Verwendet Machine Learning, um Vorhersagen basierend auf großen Datensätzen zu treffen.

Ein bekanntes Beispiel ist AlphaFold, das Deep Learning einsetzt, um die Faltung von Proteinen mit hoher Genauigkeit vorherzusagen. Diese Fortschritte haben nicht nur die Grundlagenforschung revolutioniert, sondern auch wichtige Anwendungen in der Arzneimittelentwicklung und der Biotechnologie ermöglicht.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Feynman-Propagator

Der Feynman Propagator ist ein zentrales Konzept in der Quantenfeldtheorie, das die Wahrscheinlichkeit beschreibt, dass ein Teilchen von einem Punkt x1x_1x1​ zu einem anderen Punkt x2x_2x2​ übergeht. Mathematisch wird er oft als G(x1,x2)G(x_1, x_2)G(x1​,x2​) dargestellt und ist definiert als die Fourier-Transformierte der Green'schen Funktion des zugrunde liegenden Feldes. Der Propagator berücksichtigt sowohl die relativistische als auch die quantenmechanische Natur von Teilchen und wird häufig in Berechnungen von Streuamplituden verwendet.

Die allgemeine Form des Feynman Propagators für ein skalaren Feld ist:

G(x1,x2)=∫d4p(2π)4e−ip⋅(x1−x2)p2−m2+iϵG(x_1, x_2) = \int \frac{d^4 p}{(2\pi)^4} \frac{e^{-ip \cdot (x_1 - x_2)}}{p^2 - m^2 + i\epsilon}G(x1​,x2​)=∫(2π)4d4p​p2−m2+iϵe−ip⋅(x1​−x2​)​

Hierbei ist mmm die Masse des Teilchens und ϵ\epsilonϵ ein infinitesimal kleiner positiver Wert, der sicherstellt, dass der Propagator kausal ist. Der Feynman Propagator ermöglicht es Physikern, komplexe Wechselwirkungen zwischen Teilchen zu analysieren und zu berechnen, indem er die Beiträge verschiedener Pfade summiert und somit

Multilevel-Wechselrichter in der Leistungselektronik

Multilevel-Inverter sind eine spezielle Art von Wechselrichtern, die in der Leistungselektronik eingesetzt werden, um eine hochwertige Ausgangsspannung zu erzeugen. Im Gegensatz zu herkömmlichen Wechselrichtern, die nur zwei Spannungsniveaus (positiv und negativ) erzeugen, nutzen Multilevel-Inverter mehrere Spannungsniveaus, um die Ausgangswelle zu approximieren. Dies führt zu einer signifikanten Reduzierung der harmonischen Verzerrung und verbessert die Effizienz des Systems.

Die häufigsten Topologien umfassen den Diode-Clamped, Capacitor-Clamped und Flying Capacitor Inverter. Ein wichtiger Vorteil dieser Inverter ist die Möglichkeit, höhere Spannungen mit niedrigeren Schaltverlusten zu erzeugen, was sie besonders geeignet für Anwendungen in der erneuerbaren Energieerzeugung und in der elektrischen Antriebstechnik macht. Außerdem ermöglichen sie eine bessere Leistungskontrolle und eine höhere Zuverlässigkeit in modernen elektrischen Systemen.

Superelastizität in Formgedächtnislegierungen

Superelastizität ist ein faszinierendes Phänomen, das in Formgedächtnislegierungen (Shape-Memory Alloys, SMA) auftritt. Bei diesen Materialien kann eine erhebliche elastische Verformung auftreten, ohne dass plastische Deformationen entstehen. Dies geschieht durch die reversible Umwandlung zwischen zwei Phasen: der martensitischen und der austenitischen Phase. Wenn eine SMA unter Belastung in die martensitische Phase übergeht, kann es bis zu 8 % Dehnung erreichen, bevor es in die ursprüngliche Form zurückkehrt, sobald die Belastung entfernt wird. Dieses Verhalten wird durch die Temperatur und die Zusammensetzung der Legierung beeinflusst, was es ermöglicht, diese Materialien in einer Vielzahl von Anwendungen, von der Medizintechnik bis zur Luft- und Raumfahrt, einzusetzen. Die Fähigkeit, große Verformungen zu ertragen und dennoch in die ursprüngliche Form zurückzukehren, macht Superelastizität besonders wertvoll in technischen Anwendungen.

Jensens Alpha

Jensen’s Alpha ist eine Kennzahl, die verwendet wird, um die Über- oder Unterperformance eines Portfolios oder eines einzelnen Wertpapiers im Vergleich zu einem geeigneten Marktbenchmark zu messen. Es wird berechnet, indem die erwartete Rendite eines Portfolios unter Berücksichtigung seines systematischen Risikos (gemessen durch den Beta-Wert) von der tatsächlichen Rendite abgezogen wird. Die Formel lautet:

α=Rp−(Rf+β(Rm−Rf))\alpha = R_p - \left( R_f + \beta (R_m - R_f) \right)α=Rp​−(Rf​+β(Rm​−Rf​))

wobei:

  • RpR_pRp​ die tatsächliche Rendite des Portfolios ist,
  • RfR_fRf​ die risikofreie Rendite darstellt,
  • β\betaβ das Maß für das systematische Risiko ist,
  • RmR_mRm​ die erwartete Rendite des Marktes ist.

Ein positives Jensen’s Alpha zeigt an, dass das Portfolio besser abgeschnitten hat als erwartet, während ein negatives Alpha bedeutet, dass die Rendite hinter den Erwartungen zurückgeblieben ist. Diese Kennzahl ist besonders nützlich für Investoren, die die Leistung von Fondsmanagern oder Anlagestrategien bewerten möchten.

Riemann-Zeta

Die Riemann-Zeta-Funktion ist eine komplexe Funktion, die in der Zahlentheorie eine zentrale Rolle spielt. Sie wird definiert für komplexe Zahlen sss mit dem Realteil größer als 1 durch die unendliche Reihe:

ζ(s)=∑n=1∞1ns\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}ζ(s)=n=1∑∞​ns1​

Diese Funktion kann durch analytische Fortsetzung auf andere Werte von sss erweitert, außer bei s=1s = 1s=1, wo sie einen einfachen Pol hat. Ein besonders bemerkenswerter Aspekt der Riemann-Zeta-Funktion ist ihre Verbindung zur Verteilung der Primzahlen, wie im berühmten Riemann-Hypothese formuliert, die besagt, dass alle nicht-trivialen Nullstellen der Funktion eine bestimmte Eigenschaft bezüglich ihrer Lage auf der kritischen Linie Re(s)=12\text{Re}(s) = \frac{1}{2}Re(s)=21​ haben. Die Zeta-Funktion spielt auch eine wichtige Rolle in verschiedenen Bereichen der Mathematik und Physik, einschließlich der Quantenmechanik und der statistischen Physik.

Wavelet-Matrix

Eine Wavelet Matrix ist eine spezielle Struktur, die in der Informatik und Mathematik verwendet wird, um effizient mit Daten zu arbeiten, insbesondere bei der Analyse von sequenziellen Informationen oder großen Datensätzen. Sie ermöglicht es, Informationen über ein Array von Elementen zu speichern und gleichzeitig schnelle Abfragen zu ermöglichen, wie z.B. das Zählen von Elementen oder das Bestimmen von Rang und quantilen Werten. Die Matrix wird durch die Verwendung von Wavelet-Transformationen konstruiert, die die ursprünglichen Daten in verschiedene Frequenzbereiche zerlegen.

Die Wavelet Matrix wird häufig für Aufgaben wie das schnelle Finden von Substrings oder das effiziente Speichern von Texten in komprimierter Form eingesetzt. Sie nutzt eine hierarchische Struktur, die es erlaubt, Informationen über niedrigere und höhere Frequenzen gleichzeitig zu speichern. Bei der Implementierung wird typischerweise eine binäre Darstellung der Daten verwendet, die es ermöglicht, die Komplexität der Abfragen auf O(log⁡n)O(\log n)O(logn) zu reduzieren, wobei nnn die Anzahl der Elemente im Array ist. Die Wavelet Matrix ist somit ein kraftvolles Werkzeug in der Datenstrukturtheorie und wird in Anwendungen wie Bioinformatik, Textverarbeitung und maschinellem Lernen eingesetzt.