StudierendeLehrende

Harrod-Domar Model

Das Harrod-Domar-Modell ist ein wirtschaftliches Wachstumstheorie-Modell, das die Beziehung zwischen Investitionen, Ersparnissen und dem wirtschaftlichen Wachstum beschreibt. Es postuliert, dass das Wachstum einer Volkswirtschaft von der Höhe der Investitionen abhängt, die durch die Ersparnisse finanziert werden. Zentral für dieses Modell ist die Gleichung:

G=IvG = \frac{I}{v}G=vI​

wobei GGG das Wirtschaftswachstum, III die Investitionen und vvv die Kapitalausstattung ist. Ein höheres Maß an Investitionen führt demnach zu einem größeren Wirtschaftswachstum, vorausgesetzt, die Kapitalproduktivität bleibt konstant. Das Modell legt auch nahe, dass ein Anstieg der Ersparnisse notwendig ist, um das notwendige Investitionsniveau zu erreichen und folglich das Wirtschaftswachstum zu fördern. Kritiker des Modells weisen jedoch darauf hin, dass es zu stark vereinfacht und nicht alle Faktoren berücksichtigt, die das Wachstum beeinflussen können.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Legendre-Polynome

Die Legendre-Polynome sind eine Familie von orthogonalen Polynomfunktionen, die in der Mathematik und Physik weit verbreitet sind, insbesondere in der Lösung von Differentialgleichungen und in der Theorie der Potenzialfelder. Sie sind definiert auf dem Intervall [−1,1][-1, 1][−1,1] und werden oft mit Pn(x)P_n(x)Pn​(x) bezeichnet, wobei nnn den Grad des Polynoms angibt. Die ersten paar Legendre-Polynome sind:

  • P0(x)=1P_0(x) = 1P0​(x)=1
  • P1(x)=xP_1(x) = xP1​(x)=x
  • P2(x)=12(3x2−1)P_2(x) = \frac{1}{2}(3x^2 - 1)P2​(x)=21​(3x2−1)
  • P3(x)=12(5x3−3x)P_3(x) = \frac{1}{2}(5x^3 - 3x)P3​(x)=21​(5x3−3x)

Diese Polynome erfüllen die orthogonale Bedingung:

∫−11Pm(x)Pn(x) dx=0fu¨r m≠n\int_{-1}^{1} P_m(x) P_n(x) \, dx = 0 \quad \text{für } m \neq n∫−11​Pm​(x)Pn​(x)dx=0fu¨r m=n

Die Legendre-Polynome sind besonders nützlich in der Physik, zum Beispiel bei der Lösung des Laplace-Gleichung im Kugelkoordinatensystem, da sie die Eigenschaften von sphärischen Harmonischen beschreiben.

Reynolds-averagierte Navier-Stokes

Die Reynolds-Averaged Navier-Stokes (RANS) Gleichungen sind ein fundamentales Werkzeug in der Strömungsmechanik, das verwendet wird, um die Bewegung von Fluiden zu beschreiben. Sie basieren auf den Navier-Stokes-Gleichungen, die die Dynamik von viskosen Fluiden darstellen, jedoch berücksichtigen sie zusätzlich die Auswirkungen von Turbulenz, indem sie den Einfluss von zeitlich variierenden Strömungsgrößen durch Mittelung (Averaging) herausfiltern.

Durch diese Mittelung wird die Geschwindigkeit uuu in zwei Komponenten zerlegt: u=u‾+u′u = \overline{u} + u'u=u+u′, wobei u‾\overline{u}u die zeitlich gemittelte Geschwindigkeit und u′u'u′ die Fluktuationen um diesen Durchschnitt darstellt. Das führt zu zusätzlichen Termen in den Gleichungen, bekannt als Reynolds-Spannungen, die das turbulent erzeugte Momentum beschreiben. Die RANS-Gleichungen sind besonders nützlich in der Ingenieurpraxis, da sie eine Vereinfachung der vollständigen Navier-Stokes-Gleichungen bieten und dennoch in der Lage sind, die wichtigsten Merkmale turbulent strömender Fluide zu erfassen, was sie zu einem unverzichtbaren Werkzeug in der Computational Fluid Dynamics (CFD) macht.

CMOS-Inverter-Verzögerung

Der CMOS Inverter Delay bezieht sich auf die Zeit, die benötigt wird, um den Ausgang eines CMOS-Inverters von einem stabilen Zustand in einen anderen zu ändern, nachdem ein Eingangssignal an den Inverter angelegt wurde. Diese Verzögerung ist entscheidend für die Leistung digitaler Schaltungen, da sie die maximale Schaltgeschwindigkeit und damit die Frequenz bestimmt, mit der die Schaltung betrieben werden kann. Die Verzögerung kann durch verschiedene Faktoren beeinflusst werden, einschließlich der Lastkapazität, der Größe der Transistoren und der Betriebsspannung.

Die Verzögerung tdt_dtd​ eines CMOS-Inverters kann näherungsweise mit den folgenden Gleichungen beschrieben werden:

td=CL⋅VDDIont_d = \frac{C_L \cdot V_{DD}}{I_{on}}td​=Ion​CL​⋅VDD​​

Hierbei ist CLC_LCL​ die Lastkapazität, VDDV_{DD}VDD​ die Betriebsspannung und IonI_{on}Ion​ der Einschaltstrom des Transistors. Ein wichtiges Konzept, das bei der Berechnung des Verzugs berücksichtigt werden muss, ist das RC-Verhalten, das sich aus dem Produkt der Widerstände und Kapazitäten im Schaltkreis ergibt. Je geringer der Delay, desto schneller kann die Schaltung arbeiten, was besonders in Hochgeschwindigkeitsanwendungen von Bedeutung ist.

Endogene Wachstum

Endogene Wachstumstheorien sind Modelle, die erklären, wie wirtschaftliches Wachstum durch interne Faktoren innerhalb der Wirtschaft selbst generiert wird, im Gegensatz zu externen Faktoren wie Ressourcen oder Technologie. Diese Theorien betonen die Rolle von Innovation, Bildung und Kapitalakkumulation als treibende Kräfte des Wachstums. Im Gegensatz zu neoklassischen Modellen, die annehmen, dass technologische Fortschritte exogen sind, argumentieren endogene Wachstumstheorien, dass Unternehmen und Individuen aktiv in Forschung und Entwicklung investieren, was zu kontinuierlichem Fortschritt und langfristigem Wachstum führt.

Ein zentrales Konzept ist das Human Capital, das besagt, dass Investitionen in Bildung und Ausbildung die Produktivität erhöhen können. Mathematisch lässt sich das endogene Wachstum oft durch die Gleichung darstellen:

Y=A⋅Kα⋅(H⋅L)1−αY = A \cdot K^\alpha \cdot (H \cdot L)^{1-\alpha}Y=A⋅Kα⋅(H⋅L)1−α

Hierbei steht YYY für das Output, AAA für den technologischen Fortschritt, KKK für das Kapital, HHH für das Humankapital und LLL für die Arbeit. Endogene Wachstumstheorien haben bedeutende Implikationen für die Wirtschaftspolitik, da sie darauf hinweisen, dass staatliche Investitionen in Bildung und Infrastruktur entscheidend für das langfristige Wachstum sind.

Fourier-Bessel-Reihe

Die Fourier-Bessel-Serie ist eine spezielle Form der Fourier-Serie, die zur Darstellung von Funktionen verwendet wird, die in einem zylindrischen oder kugelförmigen Koordinatensystem definiert sind. Im Gegensatz zur klassischen Fourier-Serie, die auf der Zerlegung in Sinus- und Kosinusfunktionen basiert, nutzt die Fourier-Bessel-Serie die Bessel-Funktionen als Basisfunktionen. Diese Funktionen sind besonders nützlich, wenn man Probleme in der Mathematik und Physik löst, die mit Wellen und Schwingungen in zylindrischen Geometrien zu tun haben.

Die allgemeine Form einer Fourier-Bessel-Serie kann wie folgt dargestellt werden:

f(r)=∑n=0∞AnJn(kr)f(r) = \sum_{n=0}^{\infty} A_n J_n(kr)f(r)=n=0∑∞​An​Jn​(kr)

Hierbei ist Jn(kr)J_n(kr)Jn​(kr) die n-te Bessel-Funktion erster Art, AnA_nAn​ die Koeffizienten der Serie und kkk ist eine Konstante, die oft mit der Wellenzahl in Verbindung steht. Diese Serie ermöglicht es, komplexe Funktionen durch eine unendliche Summe von Bessel-Funktionen zu approximieren, was in verschiedenen Anwendungen, wie z.B. der Signalverarbeitung oder der Lösung von Differentialgleichungen, von großer Bedeutung ist.

Gitterreduktion-Algorithmen

Lattice Reduction Algorithms sind Verfahren zur Optimierung der Struktur von Gittern (Lattices) in der Mathematik und Informatik. Ein Gitter ist eine diskrete Menge von Punkten in einem Raum, die durch lineare Kombinationen von Basisvektoren erzeugt werden. Ziel dieser Algorithmen ist es, eine Basis für das Gitter zu finden, die kürzere und näher beieinander liegende Vektoren enthält, was in vielen Anwendungen wie der kryptografischen Sicherheit und der Integer-Programmierung von Bedeutung ist. Zu den bekanntesten Algorithmen gehören der LLL-Algorithmus (Lenstra-Lenstra-Lovász) und der BKZ-Algorithmus (Block Korkin-Zolotarev), die beide die Basis unter Verwendung von orthogonalen Projektionen und Reduktionsschritten anpassen. Eine reduzierte Basis ermöglicht nicht nur eine effizientere Berechnung, sondern verbessert auch die Leistung bei der Lösung von Problemen wie dem Finden von ganzzahligen Lösungen oder der Faktorisierung von Zahlen.