StudierendeLehrende

Harrod-Domar Model

Das Harrod-Domar-Modell ist ein wirtschaftliches Wachstumstheorie-Modell, das die Beziehung zwischen Investitionen, Ersparnissen und dem wirtschaftlichen Wachstum beschreibt. Es postuliert, dass das Wachstum einer Volkswirtschaft von der Höhe der Investitionen abhängt, die durch die Ersparnisse finanziert werden. Zentral für dieses Modell ist die Gleichung:

G=IvG = \frac{I}{v}G=vI​

wobei GGG das Wirtschaftswachstum, III die Investitionen und vvv die Kapitalausstattung ist. Ein höheres Maß an Investitionen führt demnach zu einem größeren Wirtschaftswachstum, vorausgesetzt, die Kapitalproduktivität bleibt konstant. Das Modell legt auch nahe, dass ein Anstieg der Ersparnisse notwendig ist, um das notwendige Investitionsniveau zu erreichen und folglich das Wirtschaftswachstum zu fördern. Kritiker des Modells weisen jedoch darauf hin, dass es zu stark vereinfacht und nicht alle Faktoren berücksichtigt, die das Wachstum beeinflussen können.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Faser-Bragg-Gitter

Fiber Bragg Gratings (FBGs) sind periodische Modifikationen im Brechungsindex von optischen Fasern, die als effektive Filter für Lichtwellen fungieren. Sie reflektieren bestimmte Wellenlängen des Lichts, während andere durchgelassen werden, was sie ideal für Anwendungen in der Telekommunikation und Sensorik macht. Das Funktionsprinzip basiert auf dem Bragg-Gesetz, das besagt, dass eine Welle mit der Wellenlänge λB\lambda_BλB​ reflektiert wird, wenn die Bedingung

λB=2neffΛ\lambda_B = 2n_{\text{eff}} \LambdaλB​=2neff​Λ

erfüllt ist, wobei neffn_{\text{eff}}neff​ der effektive Brechungsindex der Faser und Λ\LambdaΛ die Gitterkonstante ist. FBGs sind nicht nur in der Lage, Wellenlängen zu filtern, sondern können auch zur Temperatur- und Dehnungsmessung eingesetzt werden, da sich die reflektierte Wellenlänge mit Änderungen in Temperatur oder mechanischer Belastung verändert. Ihre kompakte Bauweise und die hohe Empfindlichkeit machen sie zu einem wertvollen Werkzeug in der modernen Sensorik und Kommunikationstechnik.

Perron-Frobenius-Eigenwertsatz

Das Perron-Frobenius-Eigenwerttheorem befasst sich mit nicht-negativen Matrizen und deren Eigenwerten und -vektoren. Es besagt, dass eine nicht-negative quadratische Matrix AAA einen eindeutigen größten Eigenwert hat, der echt positiv ist, und dass der zugehörige Eigenvektor ebenfalls echt positiv ist. Dieses Theorem hat weitreichende Anwendungen in verschiedenen Bereichen, wie z.B. der Ökonomie, der Populationsdynamik und der Markov-Ketten.

Darüber hinaus garantiert das Theorem, dass, wenn die Matrix irreduzibel ist (d.h. es gibt einen Weg zwischen jedem Paar von Zuständen), der größte Eigenwert λ\lambdaλ der Matrix AAA auch der dominierende Eigenwert ist, was bedeutet, dass alle anderen Eigenwerte in Betrag kleiner sind als λ\lambdaλ. Dies bietet eine wertvolle Grundlage für die Analyse dynamischer Systeme und die Stabilität von Gleichgewichtszuständen.

Xgboost

XGBoost (Extreme Gradient Boosting) ist ein leistungsstarkes und flexibles maschinelles Lernverfahren, das auf der Boosting-Technik basiert. Es optimiert die Vorhersagegenauigkeit, indem es schwache Lernmodelle, typischerweise Entscheidungsbäume, iterativ zu einem starken Modell kombiniert. Der Algorithmus nutzt dabei Gradientenabstieg, um die Fehler der vorherigen Bäume zu minimieren und dadurch die Gesamtgenauigkeit zu steigern.

Ein zentrales Merkmal von XGBoost ist die Verwendung von Regularisierungstechniken, die helfen, Überanpassung zu verhindern und die Modellkomplexität zu steuern. Die mathematische Formulierung des Modells basiert auf der Minimierung einer Verlustfunktion LLL und der Hinzufügung eines Regularisierungsterms Ω\OmegaΩ:

Objektive Funktion=L(y,y^)+∑kΩ(fk)\text{Objektive Funktion} = L(y, \hat{y}) + \sum_{k} \Omega(f_k)Objektive Funktion=L(y,y^​)+k∑​Ω(fk​)

Hierbei steht yyy für die tatsächlichen Werte, y^\hat{y}y^​ für die vorhergesagten Werte und fkf_kfk​ für die k-ten Entscheidungsbäume. XGBoost ist besonders beliebt in Wettbewerben des maschinellen Lernens und wird häufig in der Industrie eingesetzt, um hochgradig skalierbare und effiziente Modelle zu erstellen.

Phillips-Kurve-Erwartungen

Die Phillips-Kurve beschreibt die inverse Beziehung zwischen Inflation und Arbeitslosigkeit in einer Volkswirtschaft. Mit der Einführung von Erwartungen in dieses Modell hat sich das Verständnis der Phillips-Kurve verändert. Phillips Curve Expectations beziehen sich darauf, wie die Erwartungen der Menschen bezüglich zukünftiger Inflation die tatsächlichen wirtschaftlichen Bedingungen beeinflussen können. Wenn die Menschen beispielsweise eine hohe Inflation erwarten, werden sie möglicherweise höhere Löhne fordern, was zu einer steigenden Inflation führt.

Mathematisch kann die Beziehung durch die Gleichung dargestellt werden:

πt=πte−β(ut−un)\pi_t = \pi^e_t - \beta (u_t - u_n)πt​=πte​−β(ut​−un​)

Hierbei ist πt\pi_tπt​ die tatsächliche Inflation, πte\pi^e_tπte​ die erwartete Inflation, utu_tut​ die tatsächliche Arbeitslosigkeit und unu_nun​ die natürliche Arbeitslosigkeit. Diese Erweiterung der Phillips-Kurve zeigt, dass die Erwartungen der Wirtschaftsteilnehmer eine entscheidende Rolle spielen, da sie die kurzfristige Stabilität zwischen Inflation und Arbeitslosigkeit beeinflussen können.

Mode-Locking-Laser

Ein Mode-Locking Laser ist ein spezieller Lasertyp, der in der Lage ist, ultrakurze Lichtimpulse zu erzeugen. Durch die gezielte Kopplung der verschiedenen Moden innerhalb des Lasers wird eine kohärente Erzeugung von Lichtpulsen ermöglicht, die typischerweise im Bereich von Femtosekunden (1 Femtosekunde = 10−1510^{-15}10−15 Sekunden) liegt. Dies geschieht durch die Interferenz der verschiedenen Frequenzen, die im Laserresonator gebildet werden, wobei die Pulsbreite durch die Betriebsbedingungen und die Konstruktion des Lasers beeinflusst wird.

Die Technik des Mode-Lockings kann in zwei Hauptkategorien unterteilt werden: passives und aktives Mode-Locking. Beim passiven Mode-Locking wird ein nichtlinearer optischer Effekt in einem Medium verwendet, um die Moden zu synchronisieren, während beim aktiven Mode-Locking externe modulierte Signale zur Steuerung der Pulsbildung eingesetzt werden. Diese Laser finden Anwendung in verschiedenen Bereichen, einschließlich der Materialbearbeitung, medizinischen Diagnostik und telekommunikationstechnologien, wo präzise und schnelle Lichtpulse erforderlich sind.

Trie-basierte Wörterbuchsuche

Ein Trie (auch Präfixbaum genannt) ist eine spezielle Datenstruktur, die zur effizienten Speicherung und Suche von Wörtern oder Zeichenfolgen verwendet wird. Er funktioniert, indem er die gemeinsamen Präfixe von Wörtern teilt, was die Suche nach Wörtern in einem Wörterbuch erheblich beschleunigt. In einem Trie werden die Knoten durch die einzelnen Buchstaben der Wörter dargestellt, wobei jede Ebene des Baums einem weiteren Buchstaben des gespeicherten Wortes entspricht.

Die Suche in einem Trie erfolgt durch das Durchlaufen der Knoten von der Wurzel bis zum Blatt, wobei jeder Buchstabe des gesuchten Wortes nacheinander abgearbeitet wird. Dies ermöglicht eine schnelle Suche mit einer durchschnittlichen Zeitkomplexität von O(m)O(m)O(m), wobei mmm die Länge des gesuchten Wortes ist. Ein weiterer Vorteil des Tries ist, dass er auch perfekte Präfixe unterstützt, was bedeutet, dass man leicht alle Wörter finden kann, die mit einem bestimmten Präfix beginnen.