StudierendeLehrende

Computational Social Science

Computational Social Science ist ein interdisziplinäres Forschungsfeld, das Methoden und Techniken der Informatik, Mathematik und Statistik anwendet, um soziale Phänomene zu analysieren und zu verstehen. Es kombiniert quantitative und qualitative Ansätze, um Daten aus sozialen Netzwerken, Umfragen, Online-Interaktionen und anderen Quellen zu untersuchen. Forscher nutzen Algorithmen und Modelle, um Muster und Trends in großen Datensätzen zu identifizieren, was zu Erkenntnissen über menschliches Verhalten und gesellschaftliche Strukturen führt. Ein zentrales Ziel ist es, Vorhersagen zu treffen und Hypothesen über soziale Dynamiken zu testen. Typische Anwendungen umfassen die Analyse von Wahlen, das Verständnis von Meinungsbildung und die Untersuchung von Netzwerken, die soziale Bewegungen unterstützen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Hyperbolische Diskontierung

Hyperbolic Discounting ist ein psychologisches Konzept, das beschreibt, wie Menschen zukünftige Belohnungen bewerten und wie sich diese Bewertung über die Zeit verändert. Im Gegensatz zur exponentiellen Diskontierung, bei der zukünftige Belohnungen konstant abnehmen, zeigt die hyperbolische Diskontierung, dass die Abwertung zukünftiger Belohnungen zunächst stark ist, aber mit zunehmendem Abstand zur Gegenwart langsamer wird. Dies führt oft zu irrationalem Verhalten, da kurzfristige Belohnungen überbewertet und langfristige Belohnungen unterbewertet werden.

Mathematisch kann die hyperbolische Diskontierungsfunktion wie folgt dargestellt werden:

V(t)=V01+ktV(t) = \frac{V_0}{1 + kt}V(t)=1+ktV0​​

Hierbei ist V(t)V(t)V(t) der Wert einer zukünftigen Belohnung, V0V_0V0​ der Wert der sofortigen Belohnung, kkk eine Konstante, die die Diskontierungsrate beschreibt, und ttt die Zeit bis zur Belohnung. Diese Diskontierung kann zu Problemen in der Entscheidungsfindung führen, insbesondere in Bereichen wie Konsumverhalten, Gesundheit und Finanzen, wo langfristige Planung erforderlich ist.

Anisotropes Ätzen

Anisotropes Ätzen ist ein Verfahren, das in der Mikroelektronik und Nanotechnologie eingesetzt wird, um Materialien mit kontrollierten und spezifischen Geometrien zu bearbeiten. Im Gegensatz zum isotropen Ätzen, bei dem die Ätze gleichmäßig in alle Richtungen wirken, weist das anisotrope Ätzen eine gerichtete Ätzwirkung auf, die es ermöglicht, scharfe Kanten und präzise Strukturen zu erzeugen. Dies wird häufig durch die Verwendung von Ätzmitteln erreicht, die selektiv die Kristalloberflächen eines Materials angreifen, basierend auf deren Kristallorientierung.

Ein typisches Beispiel für anisotropes Ätzen ist das Ätzen von Silizium, bei dem die Ätzrate je nach Kristallrichtung variiert. Die Ätzrate kann in der Regel als Funktion der Kristallorientierung beschrieben werden, wobei die Beziehung durch die Formel R=k⋅cos⁡(θ)R = k \cdot \cos(\theta)R=k⋅cos(θ) definiert werden kann, wobei RRR die Ätzrate, kkk eine Konstante und θ\thetaθ der Winkel zwischen der Ätzrichtung und der Kristalloberfläche ist. Die Fähigkeit, anisotrop zu ätzen, ist entscheidend für die Herstellung von Mikrochips und MEMS (Micro-Electro-Mechanical Systems), da sie die Miniaturisierung und die

Zornsches Lemma

Zorn's Lemma ist ein fundamentales Konzept in der Mengenlehre und eine wichtige Voraussetzung in der Mathematik, insbesondere in der Algebra und der Funktionalanalysis. Es besagt, dass in jeder nichtleeren Menge, die so beschaffen ist, dass jede aufsteigende Kette ein oberes Element hat, ein maximales Element existiert. Eine aufsteigende Kette ist eine total geordnete Teilmenge, in der jedes Element kleiner oder gleich dem nächsten ist. Formal ausgedrückt, wenn MMM eine nichtleere Menge ist und jede aufsteigende Kette in MMM ein oberes Element in MMM hat, dann gibt es ein Element m∈Mm \in Mm∈M, das maximal ist, d.h. es gibt kein n∈Mn \in Mn∈M mit n>mn > mn>m. Zorn's Lemma ist äquivalent zu anderen wichtigen Prinzipien in der Mathematik, wie dem Wohlordnungssatz und dem Auswahlaxiom.

Kaldor'sche Fakten

Kaldor’s Facts sind eine Reihe von empirischen Beobachtungen, die der britische Ökonom Nicholas Kaldor in den 1960er Jahren formulierte, um die Beziehung zwischen Wirtschaftswachstum und Produktionsfaktoren zu erklären. Diese Fakten besagen, dass in den meisten entwickelten Volkswirtschaften bestimmte Muster im Wachstum von Kapital und Arbeit beobachtet werden können. Zu den zentralen Punkten gehören:

  1. Kapitalintensität: Das Verhältnis von Kapital zu Arbeit in der Produktion bleibt relativ konstant über längere Zeiträume.
  2. Wachstumsrate des Outputs: Die Wachstumsrate des Produktionsoutputs ist tendenziell höher als die Wachstumsrate der Arbeitskräfte.
  3. Erträge: Die Erträge aus Kapital und Arbeit sind in der Regel konstant, was bedeutet, dass zusätzliche Einheiten von Kapital oder Arbeit nicht zu einem proportionalen Anstieg des Outputs führen.

Diese Beobachtungen legen nahe, dass technologische Fortschritte und die Effizienzsteigerung eine entscheidende Rolle für das Wirtschaftswachstum spielen. Kaldor’s Facts sind somit ein wichtiges Konzept, um die Dynamik moderner Volkswirtschaften besser zu verstehen und zu analysieren.

Zentraler Grenzwertsatz

Der Zentraler Grenzwertsatz (Central Limit Theorem, CLT) ist ein fundamentales Konzept in der Statistik, das besagt, dass die Verteilung der Mittelwerte einer ausreichend großen Anzahl von unabhängigen, identisch verteilten Zufallsvariablen approximativ normalverteilt ist, unabhängig von der ursprünglichen Verteilung der Daten. Dies gilt, solange die Variablen eine endliche Varianz besitzen.

Der Satz ist besonders wichtig, weil er es ermöglicht, mit normalverteilten Annahmen zu arbeiten, selbst wenn die zugrunde liegende Verteilung nicht normal ist. Bei einer Stichprobe von nnn Beobachtungen aus einer Population mit dem Mittelwert μ\muμ und der Standardabweichung σ\sigmaσ konvergiert die Verteilung des Stichprobenmittelwerts xˉ\bar{x}xˉ gegen eine Normalverteilung mit dem Mittelwert μ\muμ und der Standardabweichung σn\frac{\sigma}{\sqrt{n}}n​σ​, wenn nnn groß genug ist.

Zusammengefasst ist der zentrale Grenzwertsatz entscheidend für die Anwendung statistischer Methoden, insbesondere in der Hypothesentestung und bei der Konstruktion von Konfidenzintervallen.

Schelling-Segregationsmodell

Das Schelling Segregation Model ist ein agentenbasiertes Modell, das von dem Ökonom Thomas Schelling in den 1970er Jahren entwickelt wurde, um die Dynamik der Segregation in sozialen Gruppen zu untersuchen. Es zeigt, wie Individuen, die eine Präferenz für Nachbarn ähnlicher Gruppen haben, zu einer räumlichen Segregation führen können, auch wenn ihre Präferenzen nicht extrem stark sind. Das Modell besteht aus einem Gitter, auf dem verschiedene Agenten platziert sind, die unterschiedliche Eigenschaften (z.B. Ethnizität oder soziale Klasse) repräsentieren.

Die Agenten sind unzufrieden, wenn ein bestimmter Prozentsatz ihrer Nachbarn nicht die gleiche Eigenschaft hat und bewegen sich entsprechend, um ihre Situation zu verbessern. Dies führt oft zu einem selbstverstärkenden Prozess, bei dem selbst kleine Präferenzen für Homogenität zu einer erheblichen Segregation führen können. Die Ergebnisse des Modells verdeutlichen, dass Segregation nicht unbedingt das Ergebnis von Diskriminierung oder Vorurteilen ist, sondern auch aus individuellen Entscheidungen und Präferenzen resultieren kann.