StudierendeLehrende

Computational Social Science

Computational Social Science ist ein interdisziplinäres Forschungsfeld, das Methoden und Techniken der Informatik, Mathematik und Statistik anwendet, um soziale Phänomene zu analysieren und zu verstehen. Es kombiniert quantitative und qualitative Ansätze, um Daten aus sozialen Netzwerken, Umfragen, Online-Interaktionen und anderen Quellen zu untersuchen. Forscher nutzen Algorithmen und Modelle, um Muster und Trends in großen Datensätzen zu identifizieren, was zu Erkenntnissen über menschliches Verhalten und gesellschaftliche Strukturen führt. Ein zentrales Ziel ist es, Vorhersagen zu treffen und Hypothesen über soziale Dynamiken zu testen. Typische Anwendungen umfassen die Analyse von Wahlen, das Verständnis von Meinungsbildung und die Untersuchung von Netzwerken, die soziale Bewegungen unterstützen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Heap-Sort

Heap Sort ist ein effizienter Sortieralgorithmus, der auf der Datenstruktur Heap basiert, einem speziellen binären Baum. Der Algorithmus besteht aus zwei Hauptschritten: Zunächst wird ein Max-Heap aus den unsortierten Daten erstellt, wobei das größte Element an der Wurzel des Heaps positioniert wird. Danach wird das größte Element (die Wurzel) entfernt und am Ende des Array platziert, gefolgt von der Wiederherstellung der Heap-Eigenschaft für die verbleibenden Elemente. Dieser Vorgang wird wiederholt, bis alle Elemente sortiert sind.

Die Zeitkomplexität von Heap Sort beträgt O(nlog⁡n)O(n \log n)O(nlogn) im schlimmsten Fall, was ihn zu einem stabilen und zuverlässigen Algorithmus für große Datenmengen macht. Zudem benötigt er nur O(1)O(1)O(1) zusätzlichen Speicher, da er in-place arbeitet.

Topologische Isolator-Transporteigenschaften

Topologische Isolatoren sind Materialien, die elektrische Leitfähigkeit an ihren Oberflächen, jedoch nicht im Inneren aufweisen. Diese einzigartigen Transporteigenschaften resultieren aus der speziellen Struktur ihrer Elektronenbandstruktur, die durch topologische Invarianten beschrieben wird. An der Oberfläche können spin-polarisierte Zustände existieren, die durch Spin-Bahn-Kopplung stabilisiert sind und unempfindlich gegenüber Streuung durch Unordnung oder Defekte sind. Dies führt zu außergewöhnlich hohen elektrischen Leitfähigkeiten, die oft bei Raumtemperatur beobachtet werden.

Ein Beispiel für die mathematische Beschreibung dieser Phänomene ist die Verwendung der Dirac-Gleichung, die die relativistischen Eigenschaften der Elektronen in diesen Materialien beschreibt. Die Transportparameter, wie die Leitfähigkeit σ\sigmaσ, können durch die Wechselwirkungen zwischen den Oberflächenzuständen und den Bulk-Zuständen quantifiziert werden, was zu einem besseren Verständnis der elektronischen Eigenschaften und potenziellen Anwendungen in der Spintronik und Quantencomputing führt.

Jordan-Normalform-Berechnung

Die Jordan-Normalform ist eine spezielle Form einer Matrix, die in der linearen Algebra verwendet wird, um die Struktur von linearen Abbildungen zu untersuchen. Eine Matrix AAA kann in die Jordan-Normalform JJJ überführt werden, die aus Jordan-Blöcken besteht, wobei jeder Block einem Eigenwert von AAA entspricht. Die Berechnung der Jordan-Normalform erfolgt in mehreren Schritten:

  1. Eigenwerte finden: Zuerst bestimmt man die Eigenwerte der Matrix AAA durch Lösen der charakteristischen Gleichung det⁡(A−λI)=0\det(A - \lambda I) = 0det(A−λI)=0.
  2. Eigenvektoren berechnen: Für jeden Eigenwert λ\lambdaλ berechnet man die Eigenvektoren und die zugehörigen Häufigkeiten.
  3. Generalisierten Eigenvektoren: Wenn die algebraische Vielfachheit eines Eigenwerts größer ist als die geometrische Vielfachheit, müssen auch die generalisierten Eigenvektoren berechnet werden.
  4. Jordan-Blöcke erstellen: Basierend auf den Eigenvektoren und den generalisierten Eigenvektoren werden die Jordan-Blöcke erstellt. Diese Blöcke bestehen aus der Hauptdiagonalen, die den Eigenwert enthält, und Einsen auf der Superdiagonalen.

Die resultierende Jordan-Normalform JJJ

Clausius-Theorem

Das Clausius-Theorem ist ein grundlegendes Prinzip der Thermodynamik, das die Beziehung zwischen Wärme und Energie beschreibt. Es besagt, dass es unmöglich ist, Wärme von einem kälteren Körper auf einen wärmeren Körper zu übertragen, ohne dass dabei Arbeit verrichtet wird. Mathematisch wird dieses Prinzip häufig durch die Ungleichung dargestellt:

ΔS≥QT\Delta S \geq \frac{Q}{T}ΔS≥TQ​

wobei ΔS\Delta SΔS die Änderung der Entropie, QQQ die zugeführte Wärme und TTT die absolute Temperatur ist. Das Theorem impliziert, dass alle natürlichen Prozesse in einem geschlossenen System eine Zunahme der Entropie zur Folge haben, was bedeutet, dass Systeme von einem Zustand höherer Ordnung in einen Zustand niedrigerer Ordnung tendieren. Diese Erkenntnis hat weitreichende Konsequenzen für die Entwicklung effizienter thermodynamischer Maschinen und das Verständnis der Richtung von Wärmeübertragungsprozessen.

Hilbertraum

Ein Hilbertraum ist ein fundamentaler Begriff in der Mathematik und Physik, der eine vollständige und abgeschlossene Struktur für unendliche Dimensionen beschreibt. Er ist eine spezielle Art von Vektorraum, der mit einer inneren Produktstruktur ausgestattet ist, was bedeutet, dass es eine Funktion gibt, die zwei Vektoren einen Wert zuordnet und die Eigenschaften der Linearität, Symmetrie und Positivität erfüllt. Diese innere Produktstruktur ermöglicht es, Konzepte wie Längen und Winkel zwischen Vektoren zu definieren, was in der klassischen Geometrie und der Quantenmechanik von großer Bedeutung ist. Mathematisch wird ein Hilbertraum oft durch die Menge HHH, die Vektoren ψ\psiψ und das innere Produkt ⟨ψ∣ϕ⟩\langle \psi | \phi \rangle⟨ψ∣ϕ⟩ definiert, wobei ψ,ϕ∈H\psi, \phi \in Hψ,ϕ∈H. Ein wichtiges Merkmal von Hilberträumen ist ihre Vollständigkeit: jede Cauchy-Folge in einem Hilbertraum konvergiert zu einem Punkt im Raum. Hilberträume sind entscheidend für die Formulierung der Quantenmechanik, da Zustände eines quantenmechanischen Systems als Vektoren in einem Hilbertraum dargestellt werden.

Quantentiefenabsorption

Quantum Well Absorption bezieht sich auf die Absorption von Licht in Materialien, die aus quantum wells bestehen, also aus dünnen Schichten, in denen die Bewegung von Elektronen und Löchern in einer Dimension eingeschränkt ist. Diese Struktur führt zu quantisierten Energiezuständen, die die Wechselwirkungen zwischen Licht und Materie stark beeinflussen. Die Absorption erfolgt, wenn Photonen mit einer Energie, die den quantisierten Energieniveaus entspricht, von den Elektronen in den quantenmechanischen Zuständen absorbiert werden.

Ein typisches Beispiel für eine solche Struktur sind Halbleiter-Quantenschichten, in denen die Absorptionseffizienz durch die Größe der Quantengassen und die Materialeigenschaften beeinflusst wird. Die Absorptionsrate kann durch die Formel

α(λ)=Aλ2⋅δ\alpha(\lambda) = \frac{A}{\lambda^2} \cdot \deltaα(λ)=λ2A​⋅δ

beschrieben werden, wobei α\alphaα die Absorptionskoeffizienten, AAA ein Materialparameter, λ\lambdaλ die Wellenlänge des Lichts und δ\deltaδ die Dicke der Quantenschicht ist. Die Fähigkeit, spezifische Wellenlängen zu absorbieren, macht Quantum Well Absorption besonders nützlich in der Photonik und Optoelektronik, beispielsweise in Lasern und Detektoren.