StudierendeLehrende

Hermite Polynomial

Die Hermite-Polynome sind eine Familie von orthogonalen Polynomen, die in der Mathematik und Physik weit verbreitet sind, insbesondere in der Quantenmechanik und der Wahrscheinlichkeitstheorie. Sie werden typischerweise durch die Rekursionsformel oder explizit durch die Formel

Hn(x)=(−1)nex2/2dndxn(e−x2/2)H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} \left( e^{-x^2/2} \right)Hn​(x)=(−1)nex2/2dxndn​(e−x2/2)

definiert, wobei nnn die Ordnung des Polynoms ist. Diese Polynome sind orthogonal bezüglich des Gewichts e−x2e^{-x^2}e−x2 auf dem Intervall (−∞,∞)(- \infty, \infty)(−∞,∞), was bedeutet, dass für m≠nm \neq nm=n gilt:

∫−∞∞Hm(x)Hn(x)e−x2 dx=0.\int_{-\infty}^{\infty} H_m(x) H_n(x) e^{-x^2} \, dx = 0.∫−∞∞​Hm​(x)Hn​(x)e−x2dx=0.

Die Hermite-Polynome finden Anwendung in verschiedenen Bereichen, wie der Approximationstheorie, dem Wahrscheinlichkeitswesen (z.B. in der Normalverteilung) und der Lösung des Schrödinger-Gleichung für harmonische Oszillatoren. Ihre Eigenschaften, wie Symmetrie und Rekursion, machen sie zu einem wichtigen Werkzeug in der mathematischen Analyse.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Arithmetische Codierung

Arithmetic Coding ist ein effizientes Verfahren zur Datenkompression, das im Gegensatz zu traditionellen Methoden wie Huffman-Codierung arbeitet. Anstatt einzelne Symbole in Codes umzuwandeln, kodiert Arithmetic Coding eine gesamte Nachricht als eine einzelne Zahl in einem Intervall zwischen 0 und 1. Der Algorithmus nutzt die Wahrscheinlichkeitsverteilung der Symbole, um das Intervall fortlaufend zu verfeinern:

  1. Jedes Symbol wird einem bestimmten Teilintervall zugeordnet, das proportional zu seiner Wahrscheinlichkeit ist.
  2. Bei jedem neuen Symbol wird das aktuelle Intervall entsprechend dem Bereich, der diesem Symbol zugeordnet ist, angepasst.
  3. Am Ende der Kodierung wird eine Zahl innerhalb des letzten Intervalls gewählt, die die gesamte Nachricht repräsentiert.

Ein Vorteil von Arithmetic Coding ist, dass es theoretisch eine bessere Kompression als die Huffman-Codierung bietet, insbesondere bei langen Nachrichten mit einer bekannten Wahrscheinlichkeitsverteilung der Symbole.

Rydberg-Atom

Ein Rydberg Atom ist ein Atom, dessen äußeres Elektron in einem stark angeregten Zustand ist, typischerweise in einem hohen Hauptquantenzahl-Zustand nnn. Diese Atome zeichnen sich durch ihre außergewöhnlich großen Radien und die Tatsache aus, dass sie sehr empfindlich auf äußere elektromagnetische Felder reagieren. Aufgrund ihrer Größe und der schwachen Bindung des äußeren Elektrons können Rydberg Atome in der Quantenoptik und der Quanteninformationstechnologie verwendet werden.

Die Rydberg-Atome zeigen auch bemerkenswerte Eigenschaften in Bezug auf Wechselwirkungen untereinander, da ihre großen Elektronenwolken zu einer signifikanten Langstreckenwechselwirkung führen können. Mathematisch können die Energieniveaus eines Rydberg Atoms durch die Formel

En=−RHn2E_n = -\frac{R_H}{n^2}En​=−n2RH​​

beschrieben werden, wobei RHR_HRH​ die Rydberg-Konstante ist und nnn die Hauptquantenzahl darstellt. Diese Eigenschaften machen Rydberg Atome zu einem spannenden Forschungsfeld in der modernen Physik.

Retinale Prothese

Eine Retinalprothese ist ein medizinisches Gerät, das entwickelt wurde, um Menschen mit bestimmten Formen der Erblindung, insbesondere bei Erkrankungen wie der altersbedingten Makuladegeneration oder Retinitis pigmentosa, zu helfen. Diese Prothesen funktionieren, indem sie Lichtsignale in elektrische Impulse umwandeln, die dann an die verbliebenen Ganglienzellen der Netzhaut weitergeleitet werden. Die Technologie besteht typischerweise aus einer kleinen Kamera, die auf einer Brille montiert ist, und einem Implantat, das chirurgisch in das Auge eingesetzt wird.

Die Kamera erfasst visuelle Informationen und sendet diese drahtlos an das Implantat, das die Informationen verarbeitet und stimuliert die Nervenenden in der Netzhaut. Dies ermöglicht es den Patienten, grundlegende visuelle Wahrnehmungen wie Licht, Bewegung und Konturen zu erkennen. Obwohl die Bildqualität im Vergleich zur natürlichen Sicht eingeschränkt ist, stellt die Retinalprothese einen bedeutenden Fortschritt in der Rehabilitation von Sehbehinderten dar und eröffnet neue Möglichkeiten für deren Lebensqualität.

Quantenradierer-Experimente

Die Quantum Eraser Experiments sind faszinierende Experimente in der Quantenmechanik, die die Rolle von Information und Beobachtung bei quantenmechanischen Systemen untersuchen. Im Wesentlichen demonstrieren diese Experimente, dass das Wissen über einen quantenmechanischen Zustand, wie z.B. den Pfad eines Teilchens, das Verhalten dieses Teilchens beeinflussen kann. Wenn die Information über den Pfad „löschen“ oder „verbergen“ wird, zeigen die Teilchen interferenzmuster, die darauf hindeuten, dass sie sich wie Wellen und nicht wie Teilchen verhalten.

Ein bekanntes Beispiel ist das Doppelspalt-Experiment, bei dem Photonen durch zwei Spalte geschickt werden. Wenn die Pfadinformation erlangt wird, zeigen die Photonen kein Interferenzmuster, doch wenn diese Information gelöscht wird, erscheint das Interferenzmuster erneut. Dies führt zu der Erkenntnis, dass der Akt der Beobachtung selbst die Realität beeinflusst, was tiefgreifende Implikationen für unser Verständnis von Realität und Messung in der Quantenmechanik hat.

Cournot-Modell

Das Cournot-Modell ist ein grundlegendes Konzept der Oligopoltheorie, das beschreibt, wie Unternehmen in einem Markt mit wenigen Anbietern ihre Produktionsmengen wählen, um ihren Gewinn zu maximieren. In diesem Modell gehen die Unternehmen davon aus, dass die Produktionsmengen ihrer Konkurrenten konstant bleiben, während sie ihre eigene Menge anpassen. Die Unternehmen wählen ihre Produktionsmenge qiq_iqi​, um den Gesamtmarktpreis P(Q)P(Q)P(Q) zu beeinflussen, wobei QQQ die Gesamtmenge aller Anbieter ist und sich aus der Summe der einzelnen Mengen ergibt:

Q=q1+q2+...+qnQ = q_1 + q_2 + ... + q_nQ=q1​+q2​+...+qn​

Die Unternehmen maximieren ihren Gewinn πi\pi_iπi​ durch die Gleichung:

πi=P(Q)⋅qi−C(qi)\pi_i = P(Q) \cdot q_i - C(q_i)πi​=P(Q)⋅qi​−C(qi​)

wobei C(qi)C(q_i)C(qi​) die Kostenfunktion ist. Das Gleichgewicht im Cournot-Modell wird erreicht, wenn kein Unternehmen einen Anreiz hat, seine Produktionsmenge zu ändern, was bedeutet, dass die Reaktionsfunktionen der Unternehmen sich schneiden. Diese Annahme führt zu einem stabilen Marktgleichgewicht, das sowohl für die Unternehmen als auch für die Konsumenten von Bedeutung ist.

Brillouin-Streulicht

Das Brillouin Light Scattering (BLS) ist ein physikalisches Phänomen, das auf der Wechselwirkung von Licht mit akustischen Wellen in einem Medium beruht. Wenn ein Lichtstrahl auf ein Material trifft, können die Photonen durch die elastischen Schwingungen der Atome im Material gestreut werden, was zu einer Frequenzverschiebung des gestreuten Lichts führt. Diese Frequenzverschiebung ist direkt mit der akustischen Wellenlänge und der Geschwindigkeit der Schallwellen im Material verknüpft und kann durch die Beziehung

Δf=2vλ\Delta f = \frac{2v}{\lambda}Δf=λ2v​

beschrieben werden, wobei Δf\Delta fΔf die Frequenzverschiebung, vvv die Schallgeschwindigkeit und λ\lambdaλ die Wellenlänge des Lichts ist. BLS wird häufig in der Materialforschung eingesetzt, um Informationen über mechanische Eigenschaften, wie Elastizität und Dämpfung, sowie über strukturelle Eigenschaften auf mikroskopischer Ebene zu gewinnen. Es ist eine nicht-invasive Technik, die sowohl in der Grundlagenforschung als auch in industriellen Anwendungen von Bedeutung ist.