StudierendeLehrende

Homomorphic Encryption

Homomorphic Encryption ist eine Form der Verschlüsselung, die es ermöglicht, Berechnungen auf verschlüsselten Daten durchzuführen, ohne diese vorher entschlüsseln zu müssen. Dies bedeutet, dass der Dateninhaber die Kontrolle über seine Daten behält, während Dritte Berechnungen durchführen können, ohne Zugang zu den tatsächlichen Informationen zu erhalten. Ein Beispiel für eine homomorphe Eigenschaft ist die additive Homomorphie, bei der die Verschlüsselung von zwei Zahlen xxx und yyy eine Verschlüsselung des Ergebnisses x+yx + yx+y ergibt. Mathematisch ausgedrückt könnte dies so aussehen:

E(x+y)=E(x)⊕E(y)E(x + y) = E(x) \oplus E(y)E(x+y)=E(x)⊕E(y)

wobei EEE die Verschlüsselungsfunktion und ⊕\oplus⊕ die Operation ist, die die Addition repräsentiert. Diese Technologie hat das Potenzial, die Datensicherheit in Bereichen wie Cloud-Computing und Datenschutz zu revolutionieren, da sie es Unternehmen ermöglicht, sensible Informationen zu verarbeiten, ohne diese zu gefährden.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

MEMS-Beschleunigungssensor-Design

Ein MEMS-Beschleunigungsmesser (Micro-Electro-Mechanical Systems) ist ein Miniaturgerät, das Beschleunigungskräfte misst, die auf einen Körper wirken. Das Design basiert auf der Integration von mechanischen und elektrischen Komponenten auf einem einzigen Chip, was eine hohe Präzision und Empfindlichkeit ermöglicht. Wesentliche Elemente eines MEMS-Beschleunigungsmessers sind:

  • Sensorelemente: Diese bestehen oft aus einem beweglichen Masse-Element, das auf einer flexiblen Feder gelagert ist und durch die Beschleunigung verrückt wird.
  • Wandler: Die Bewegung der Masse wird in ein elektrisches Signal umgewandelt, häufig durch Kapazitätsänderungen, die dann gemessen werden.

Ein typisches Design erfordert die Berücksichtigung von Faktoren wie Dämpfung, Stabilität und Temperaturkompensation, um die Genauigkeit zu gewährleisten. Die mathematische Beschreibung der Bewegung kann durch die Gleichung F=m⋅aF = m \cdot aF=m⋅a erfolgen, wobei FFF die auf die Masse wirkende Kraft, mmm die Masse und aaa die Beschleunigung ist. MEMS-Beschleunigungsmesser finden Anwendung in verschiedenen Bereichen, einschließlich der Automobilindustrie, Mobiltelefonen und tragbaren Geräten.

Kolmogorov-Spektrum

Das Kolmogorov-Spektrum beschreibt die Energieverteilung in einer turbulenten Strömung und ist ein zentrales Konzept in der Turbulenztheorie. Es basiert auf den Arbeiten des russischen Mathematikers Andrei Kolmogorov, der in den 1940er Jahren die statistischen Eigenschaften turbulenter Strömungen untersuchte. Im Kern besagt das Kolmogorov-Spektrum, dass in einer homogenen, isotropen Turbulenz die kinetische Energie über verschiedene Skalen hinweg verteilt ist, wobei kleinere Skalen eine größere Dichte an Energie aufweisen. Mathematisch wird diese Beziehung oft durch die Energie-Spektraldichte E(k)E(k)E(k) dargestellt, die als Funktion der Wellenzahl kkk gegeben ist:

E(k)∝k−5/3E(k) \propto k^{-5/3}E(k)∝k−5/3

Hierbei ist kkk der Wellenzahlvektor, und die Beziehung zeigt, dass die Energie in den größeren Skalen (niedrigere Werte von kkk) geringer ist als in den kleineren Skalen (höhere Werte von kkk). Dieses Spektrum hilft nicht nur beim Verständnis von Turbulenzphänomenen, sondern hat auch Anwendungen in verschiedenen Bereichen der Physik und Ingenieurwissenschaften, etwa in der Meteorologie und der Strömungsmechanik.

Arrow-Lind-Theorem

Das Arrow-Lind-Theorem ist ein wichtiges Resultat in der Wirtschaftstheorie, das sich mit der Bewertung von Unsicherheiten und Risiken in der Entscheidungstheorie befasst. Es besagt, dass unter bestimmten Voraussetzungen ein risikoscheuer Investor, der seine Entscheidungen auf der Grundlage einer Nutzenfunktion trifft, eine eindeutige und konsistente Bewertung von riskanten Ergebnissen vornehmen kann. Das Theorem zeigt, dass die Erwartungen der Investoren über zukünftige Nutzen in Form einer Erwartungsnutzentheorie dargestellt werden können.

Kernpunkte des Theorems sind:

  • Die Konsistenz der Entscheidungen bei verschiedenen Risiken.
  • Die Möglichkeit, Entscheidungen in Bezug auf Unsicherheiten durch eine mathematische Funktion zu modellieren.
  • Die Annahme, dass Investoren ihre Entscheidungen auf Basis von erwarteten Nutzen treffen, was zu rationalen Entscheidungen führt.

Das Arrow-Lind-Theorem ist von grundlegender Bedeutung für die moderne Finanz- und Wirtschaftstheorie, da es die Grundlage für viele Modelle zur Risikobewertung und Entscheidungsfindung bildet.

Black-Scholes

Das Black-Scholes-Modell ist ein fundamentales Konzept in der Finanzmathematik, das zur Bewertung von Optionen verwendet wird. Es ermöglicht die Berechnung des theoretischen Preises einer europäischen Option, die nur am Verfallstag ausgeübt werden kann. Die zentrale Annahme des Modells ist, dass die Preise der zugrunde liegenden Vermögenswerte einem geometrischen brownschen Bewegung folgen, was bedeutet, dass sie zufälligen Schwankungen unterliegen.

Die Hauptformel für den Preis einer europäischen Call-Option lautet:

C=S0N(d1)−Xe−rTN(d2)C = S_0 N(d_1) - X e^{-rT} N(d_2)C=S0​N(d1​)−Xe−rTN(d2​)

wobei:

  • CCC der Preis der Call-Option ist,
  • S0S_0S0​ der aktuelle Preis des Basiswerts,
  • XXX der Ausübungspreis der Option,
  • rrr der risikofreie Zinssatz,
  • TTT die Zeit bis zum Verfall in Jahren und
  • N(d)N(d)N(d) die kumulative Verteilungsfunktion der Standardnormalverteilung.

Die Variablen d1d_1d1​ und d2d_2d2​ werden durch folgende Formeln definiert:

d_1 = \frac{\ln(S_0 / X) + (r + \sigma^2/2)T}{\sigma \sqrt

Keynesianischer Fiskalmultiplikator

Der Keynesianische Fiskalmultiplikator ist ein wirtschaftliches Konzept, das beschreibt, wie Veränderungen in der Staatsausgaben oder Besteuerung das Gesamteinkommen einer Volkswirtschaft beeinflussen. Wenn die Regierung beispielsweise die Ausgaben erhöht, führt dies zu einer direkten Erhöhung der Gesamtnachfrage, was wiederum Unternehmen dazu anregt, mehr zu produzieren und Arbeitsplätze zu schaffen. Der Multiplikator-Effekt entsteht, weil die zusätzlichen Einkommen, die durch diese Ausgaben generiert werden, wiederum zu weiteren Ausgaben führen.

Der Fiskalmultiplikator kann mathematisch als Verhältnis der Änderung des Gesamteinkommens (ΔY\Delta YΔY) zur Änderung der Staatsausgaben (ΔG\Delta GΔG) dargestellt werden:

k=ΔYΔGk = \frac{\Delta Y}{\Delta G}k=ΔGΔY​

Dabei steht kkk für den Multiplikator. Ein höherer Multiplikator bedeutet, dass die Wirkung der Staatsausgaben auf das Gesamteinkommen stärker ist. In der Praxis variiert der Fiskalmultiplikator je nach wirtschaftlichen Bedingungen, wie z.B. der Höhe der Arbeitslosigkeit oder der Kapazitätsauslastung der Wirtschaft.

Shapley-Wert kooperative Spiele

Der Shapley-Wert ist ein Konzept aus der Spieltheorie, das verwendet wird, um den Beitrag einzelner Spieler in kooperativen Spielen zu quantifizieren. In einem kooperativen Spiel schließen sich Spieler zusammen, um gemeinsam einen Gewinn zu erzielen, und der Shapley-Wert hilft dabei, diesen Gewinn fair zwischen den Spielern zu verteilen. Der Wert basiert auf der Idee, dass jeder Spieler einen unterschiedlichen Beitrag zu verschiedenen Koalitionen leistet, und berechnet den durchschnittlichen marginalen Nutzen, den ein Spieler für jede mögliche Koalition bringt.

Mathematisch wird der Shapley-Wert für einen Spieler iii als folgt definiert:

ϕi(v)=∑S⊆N∖{i}∣S∣!⋅(∣N∣−∣S∣−1)!∣N∣!⋅(v(S∪{i})−v(S))\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! \cdot (|N| - |S| - 1)!}{|N|!} \cdot (v(S \cup \{i\}) - v(S))ϕi​(v)=S⊆N∖{i}∑​∣N∣!∣S∣!⋅(∣N∣−∣S∣−1)!​⋅(v(S∪{i})−v(S))

Hierbei ist v(S)v(S)v(S) der Wert, den die Koalition SSS erzielt, und NNN ist die Menge aller Spieler. Der Shapley-Wert hat zahlreiche Anwendungen in verschiedenen Bereichen, einschließlich Wirtschaft, Politik und Ökologie, da er eine faire und ausgewogene Methode zur Verteilung von Ressourcen und Gewinnen bietet.