StudierendeLehrende

Shape Memory Alloy

Shape Memory Alloys (SMAs) sind spezielle Legierungen, die die Fähigkeit besitzen, ihre ursprüngliche Form nach Deformation wiederherzustellen, wenn sie einer bestimmten Temperatur ausgesetzt werden. Diese Legierungen funktionieren aufgrund von zwei verschiedenen Phasen: der Martensit-Phase und der Austenit-Phase. In der Martensit-Phase können die Materialien leicht verformt werden, während sie in der Austenit-Phase eine festgelegte Form annehmen.

Ein typisches Beispiel für ein Shape Memory Alloy ist die Legierung aus Nickel und Titan (NiTi). Bei der Erwärmung auf eine bestimmte Temperatur, die als Transformationstemperatur bezeichnet wird, kehren die SMAs in ihre ursprüngliche Form zurück. Dies macht sie in vielen Anwendungen nützlich, wie zum Beispiel in der Medizintechnik für Stents, in der Automobilindustrie oder in der Robotik, wo sie als Aktuatoren verwendet werden können.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Debye-Länge

Die Debye-Länge ist ein wichtiger Parameter in der Plasmaphysik und der Elektrochemie, der die Reichweite der elektrostatischen Wechselwirkungen zwischen geladenen Teilchen in einem Plasma oder einer Elektrolytlösung beschreibt. Sie gibt an, wie weit sich elektrische Felder in solchen Medien ausbreiten können, bevor sie durch die Anwesenheit anderer geladener Teilchen abgeschirmt werden. Mathematisch wird die Debye-Länge λD\lambda_DλD​ durch die Formel

λD=ε0kBTnq2\lambda_D = \sqrt{\frac{\varepsilon_0 k_B T}{n q^2}}λD​=nq2ε0​kB​T​​

definiert, wobei ε0\varepsilon_0ε0​ die elektrische Feldkonstante, kBk_BkB​ die Boltzmann-Konstante, TTT die Temperatur, nnn die Teilchendichte und qqq die Ladung eines einzelnen Teilchens ist. Eine kleine Debye-Länge deutet auf eine starke Abschirmung der elektrischen Felder hin, während eine große Debye-Länge auf eine schwache Abschirmung hinweist. Dieses Konzept ist entscheidend für das Verständnis von Phänomenen wie der Leitfähigkeit in Elektrolyten und der Stabilität von Plasmen.

Hopcroft-Karp

Der Hopcroft-Karp-Algorithmus ist ein effizienter Algorithmus zur Berechnung der maximalen Paarung in bipartiten Graphen. Er arbeitet mit einer Laufzeit von O(EV)O(E \sqrt{V})O(EV​), wobei EEE die Anzahl der Kanten und VVV die Anzahl der Knoten im Graphen ist. Der Algorithmus besteht aus zwei Hauptphasen: der BFS-Phase (Breadth-First Search), die ein augmentierendes Pfad sucht, und der DFS-Phase (Depth-First Search), die diese Pfade nutzt, um die Paarung zu erweitern. Der Prozess wird wiederholt, bis keine augmentierenden Pfade mehr gefunden werden können. Die Effizienz des Algorithmus beruht auf der geschickten Nutzung von Schichten und der gezielten Suche nach maximalen Pfaden, was ihn zu einem der besten Algorithmen für dieses Problem macht.

Pell-Gleichung

Die Pell-Gleichung ist eine Diophantische Gleichung der Form

x2−Dy2=1x^2 - Dy^2 = 1x2−Dy2=1

wobei DDD eine positive ganze Zahl ist, die kein Quadrat ist. Das Ziel ist es, ganzzahlige Lösungen (x,y)(x, y)(x,y) zu finden. Eine bemerkenswerte Eigenschaft der Pell-Gleichung ist, dass sie unendlich viele Lösungen hat, wenn mindestens eine nicht-triviale Lösung existiert. Diese Lösungen können durch den Einsatz der Kettenbruchdarstellung der Quadratwurzel von DDD generiert werden. Die kleinste positive Lösung wird als die fundamentale Lösung bezeichnet und ist oft der Ausgangspunkt zur Erzeugung weiterer Lösungen durch wiederholtes Quadrieren und Kombinieren der Lösungen.

Elektronenbandstruktur

Die Elektronenbandstruktur beschreibt die erlaubten und verbotenen Energieniveaus von Elektronen in einem Festkörper. In einem Kristall sind die Elektronen nicht lokalisiert, sondern bewegen sich in einem Periodensystem von Potentialen, was zu einer diskreten Energieaufteilung führt. Die Bandstruktur ist entscheidend für das Verständnis von elektrischen, optischen und thermischen Eigenschaften von Materialien.

Ein Material kann in drei Hauptkategorien eingeteilt werden, basierend auf seiner Bandstruktur:

  1. Leiter: Hier gibt es eine Überlappung zwischen dem Valenzband und dem Leitungsband, was den freien Fluss von Elektronen ermöglicht.
  2. Halbleiter: Diese besitzen eine kleine Bandlücke (EgE_gEg​), die es Elektronen erlaubt, bei ausreichender Energie (z.B. durch Temperatur oder Licht) ins Leitungsband zu springen.
  3. Isolatoren: Sie haben eine große Bandlücke, die eine Bewegung der Elektronen zwischen den Bändern stark einschränkt.

Die mathematische Beschreibung der Bandstruktur erfolgt häufig durch die Bloch-Theorie, die zeigt, wie sich die Energie eines Elektrons in Abhängigkeit von seinem Wellenvektor kkk verändert.

Poisson-Summationsformel

Die Poisson-Summationsformel ist ein wichtiges Resultat in der Fourier-Analyse, das eine Beziehung zwischen der Summation einer Funktion und der Summation ihrer Fourier-Transformierten herstellt. Sie besagt, dass für eine geeignete Funktion f(x)f(x)f(x) die folgende Gleichung gilt:

∑n=−∞∞f(n)=∑m=−∞∞f^(m)\sum_{n=-\infty}^{\infty} f(n) = \sum_{m=-\infty}^{\infty} \hat{f}(m)n=−∞∑∞​f(n)=m=−∞∑∞​f^​(m)

Hierbei ist f^(m)\hat{f}(m)f^​(m) die Fourier-Transformierte von f(x)f(x)f(x), definiert als:

f^(m)=∫−∞∞f(x)e−2πimx dx\hat{f}(m) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i mx} \, dxf^​(m)=∫−∞∞​f(x)e−2πimxdx

Die Formel zeigt, dass die Diskretisierung einer Funktion (die Summation über ganzzahlige Punkte) äquivalent ist zur Diskretisierung ihrer Frequenzdarstellung. Dies hat weitreichende Anwendungen in verschiedenen Bereichen der Mathematik und Physik, insbesondere in der Signalverarbeitung und der Zahlentheorie, da sie es ermöglicht, Probleme in einem Bereich durch die Betrachtung in einem anderen Bereich zu lösen.

Verhandlung-Nash

Der Begriff Bargaining Nash bezieht sich auf das Konzept des Verhandelns in der Spieltheorie, das von John Nash entwickelt wurde. Es beschreibt die Bedingungen, unter denen zwei oder mehr Parteien einvernehmlich zu einer Lösung gelangen, die für alle Beteiligten vorteilhaft ist. In diesem Kontext wird oft das sogenannte Nash-Gleichgewicht verwendet, das eine Situation beschreibt, in der kein Spieler einen Anreiz hat, seine Strategie einseitig zu ändern, da dies zu einem schlechteren Ergebnis führen würde.

Ein zentrales Element ist die Effizienz, die sicherstellt, dass keine weiteren Gewinne mehr erzielt werden können, ohne dass jemand anders schlechter gestellt wird. Die Verhandlungsposition der Parteien wird dabei durch ihre Ausscheidungspunkte bestimmt, also die Ergebnisse, die sie im Falle eines Scheiterns der Verhandlungen erzielen könnten. Das Nash-Verhandlungstheorem zeigt, dass unter bestimmten Bedingungen die Verhandlungslösungen stabil sind und dass die Parteien rational handeln, um ihre Nutzenmaximierung zu erreichen.