StudierendeLehrende

Hopcroft-Karp Bipartite

Der Hopcroft-Karp-Algorithmus ist ein effizientes Verfahren zur Lösung des Problems der maximalen Paarung in bipartiten Graphen. Ein bipartiter Graph besteht aus zwei Gruppen von Knoten, wobei Kanten nur zwischen Knoten aus verschiedenen Gruppen existieren. Der Algorithmus arbeitet in zwei Hauptphasen: der Erweiterung und der Kollaps, um eine maximale Paarung zu finden.

In der Erweiterungsphase wird eine Suche nach augmentierenden Pfaden durchgeführt, die es ermöglichen, die aktuelle Paarung zu vergrößern. In der Kollapsphase wird die gefundene maximale Paarung optimiert, um die Anzahl der gepaarten Knoten zu maximieren. Die Zeitkomplexität des Hopcroft-Karp-Algorithmus beträgt O(EV)O(E \sqrt{V})O(EV​), wobei EEE die Anzahl der Kanten und VVV die Anzahl der Knoten im Graphen ist. Dieser Algorithmus findet Anwendung in verschiedenen Bereichen, wie z.B. im Matching von Jobs und Bewerbern oder in der Zuweisung von Ressourcen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

PWM-Modulation

Die Pulsweitenmodulation (PWM) ist eine Technik zur Steuerung der Leistung an elektrischen Geräten, indem das Verhältnis von Ein- und Ausschaltzeiten eines Signals variiert wird. Bei PWM wird ein digitales Signal mit einer konstanten Frequenz erzeugt, dessen Pulsbreite (die Zeit, in der das Signal auf "hoch" steht) moduliert wird, um die effektive Spannung zu steuern. Das bedeutet, dass je länger der Puls im Vergleich zur Gesamtperiode ist, desto mehr Energie wird zum Verbraucher geleitet.

Die PWM kann mathematisch durch die Duty-Cycle-Formel beschrieben werden:

Duty Cycle(%)=(TONTON+TOFF)×100\text{Duty Cycle} (\%) = \left( \frac{T_{ON}}{T_{ON} + T_{OFF}} \right) \times 100Duty Cycle(%)=(TON​+TOFF​TON​​)×100

wobei TONT_{ON}TON​ die Zeit ist, in der das Signal aktiv ist, und TOFFT_{OFF}TOFF​ die Zeit, in der das Signal inaktiv ist. Diese Methode findet breite Anwendung in der Steuerung von Motoren, der Dimmtechnik für LEDs und in der Regelung von Heizsystemen, da sie eine präzise Kontrolle der Leistung bei minimalem Energieverlust ermöglicht.

GARCH-Modell-Volatilitätsschätzung

Das GARCH-Modell (Generalized Autoregressive Conditional Heteroskedasticity) ist ein weit verbreitetes Verfahren zur Schätzung der Volatilität von Zeitreihen, insbesondere in der Finanzwirtschaft. Es ermöglicht die Modellierung von variabler Volatilität, die sich über die Zeit verändert, anstatt eine konstante Volatilität anzunehmen, wie es bei vielen klassischen Modellen der Fall ist. Die Grundidee des GARCH-Modells ist, dass die heutige Volatilität durch vergangene Fehler und vergangene Volatilität beeinflusst wird. Mathematisch wird dies oft als:

σt2=α0+∑i=1qαiεt−i2+∑j=1pβjσt−j2\sigma_t^2 = \alpha_0 + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^{p} \beta_j \sigma_{t-j}^2σt2​=α0​+i=1∑q​αi​εt−i2​+j=1∑p​βj​σt−j2​

dargestellt, wobei σt2\sigma_t^2σt2​ die bedingte Varianz zum Zeitpunkt ttt ist, ε\varepsilonε die Fehlerterme und α\alphaα sowie β\betaβ die Modellparameter sind. Ein wesentliches Merkmal des GARCH-Modells ist, dass es Clusterung von Volatilität erfasst, was bedeutet, dass Perioden hoher Volatilität häufig auf Perioden hoher Volatilität folgen und umgekehrt. Dieses Modell ist besonders n

Runge'scher Approximationssatz

Das Runge'sche Approximations-Theorem ist ein fundamentales Resultat in der Approximationstheorie, das sich mit der Annäherung von Funktionen durch rationale Funktionen beschäftigt. Es besagt, dass jede stetige Funktion, die auf einem kompakten Intervall definiert ist, durch rationale Funktionen beliebig gut approximiert werden kann, wenn man genügend viele Pole außerhalb des Intervalls wählt.

Insbesondere gilt:

  1. Wenn fff eine Funktion ist, die auf einem kompakten Intervall [a,b][a, b][a,b] stetig ist, dann kann für jede positive Zahl ϵ\epsilonϵ eine rationale Funktion RRR gefunden werden, so dass der Unterschied ∣f(x)−R(x)∣<ϵ|f(x) - R(x)| < \epsilon∣f(x)−R(x)∣<ϵ für alle xxx in [a,b][a, b][a,b] ist.
  2. Die Pole der rationalen Funktionen sollten außerhalb des Intervalls liegen, was bedeutet, dass sie nicht in der Nähe der Punkte aaa und bbb liegen dürfen.

Das Theorem hat weitreichende Anwendungen in der numerischen Mathematik und der Signalverarbeitung, da es eine Methode zur Approximation komplexer Funktionen bietet.

Advektions-Diffusionsnumerische Verfahren

Advection-Diffusion-Modelle beschreiben die Bewegung von Substanzen (z.B. Wärme, Chemikalien) in einem Medium durch zwei Hauptprozesse: Advektion, die den Transport durch eine Strömung beschreibt, und Diffusion, die die zufällige Bewegung von Partikeln aufgrund von Konzentrationsunterschieden beschreibt. Numerische Verfahren zur Lösung dieser Gleichungen zielen darauf ab, die zeitlichen und räumlichen Veränderungen der Konzentration präzise abzubilden. Typische Ansätze umfassen Verfahren wie das Finite-Differenzen-Verfahren und Finite-Elemente-Methoden, die beide diskretisierte Approximationen der ursprünglichen partiellen Differentialgleichungen verwenden.

Ein zentrales Konzept in diesen Methoden ist die Stabilität der numerischen Lösung, die durch geeignete Wahl der Zeit- und Raumgitter sowie durch die Implementierung von Techniken wie Upwind-Schemata oder Richtungsabhängige Differenzen gewährleistet wird. Mathematisch wird das Advection-Diffusion-Modell häufig durch die Gleichung

∂c∂t+u∂c∂x=D∂2c∂x2\frac{\partial c}{\partial t} + u \frac{\partial c}{\partial x} = D \frac{\partial^2 c}{\partial x^2}∂t∂c​+u∂x∂c​=D∂x2∂2c​

beschrieben, wobei ccc die Konzentration, uuu die Ad

Binomialmodell

Das Binomial Pricing ist ein Modell zur Bewertung von Finanzderivaten, insbesondere Optionen. Es basiert auf der Annahme, dass der Preis eines Basiswerts in diskreten Zeitintervallen entweder steigt oder fällt, wodurch ein binomialer Baum entsteht. In jedem Schritt des Modells wird der Preis des Basiswerts um einen bestimmten Faktor uuu (bei Anstieg) und um einen anderen Faktor ddd (bei Fall) verändert.

Die Wahrscheinlichkeiten für den Anstieg und den Fall werden oft als ppp und 1−p1-p1−p definiert. Um den aktuellen Wert einer Option zu berechnen, wird die erwartete Auszahlung in der Zukunft unter Berücksichtigung dieser Wahrscheinlichkeiten diskontiert. Der Vorteil des Binomialmodells liegt in seiner Flexibilität, da es für verschiedene Arten von Optionen und sogar für komplizierte Derivate angewendet werden kann. In der Praxis wird das Modell häufig genutzt, um den Preis von europäischen und amerikanischen Optionen zu bestimmen.

Photonische Bandlücken-Engineering

Photonic Bandgap Engineering bezieht sich auf die gezielte Gestaltung von Materialien, um spezifische Wellenlängen von Licht zu kontrollieren und zu manipulieren. In diesen Materialien, oft als Photonic Crystals bezeichnet, werden die Lichtwellen durch periodische Strukturen reflektiert oder durchgelassen, was zu einem sogenannten photonic bandgap führt. Dieser Bandgap ist ein Frequenzbereich, in dem Licht nicht propagieren kann, ähnlich wie bei elektronischen Halbleitern.

Die Eigenschaften dieser Materialien können durch die Variation von Faktoren wie der Struktur, der Geometrie und dem Materialtyp angepasst werden, was zu vielseitigen Anwendungen in der Optoelektronik, Sensorik und Telekommunikation führt. Ein Beispiel ist die Entwicklung von Laser oder Filter mit sehr spezifischen Eigenschaften, die durch die Manipulation des Bandgaps erreicht werden. Mathematisch lässt sich der photonic bandgap durch die Bragg-Bedingung darstellen, die beschreibt, wie die Wellenlänge des Lichts im Verhältnis zur Struktur des Materials steht.