StudierendeLehrende

Hyperbolic Discounting

Hyperbolic Discounting ist ein psychologisches Konzept, das beschreibt, wie Menschen zukünftige Belohnungen bewerten und wie sich diese Bewertung über die Zeit verändert. Im Gegensatz zur exponentiellen Diskontierung, bei der zukünftige Belohnungen konstant abnehmen, zeigt die hyperbolische Diskontierung, dass die Abwertung zukünftiger Belohnungen zunächst stark ist, aber mit zunehmendem Abstand zur Gegenwart langsamer wird. Dies führt oft zu irrationalem Verhalten, da kurzfristige Belohnungen überbewertet und langfristige Belohnungen unterbewertet werden.

Mathematisch kann die hyperbolische Diskontierungsfunktion wie folgt dargestellt werden:

V(t)=V01+ktV(t) = \frac{V_0}{1 + kt}V(t)=1+ktV0​​

Hierbei ist V(t)V(t)V(t) der Wert einer zukünftigen Belohnung, V0V_0V0​ der Wert der sofortigen Belohnung, kkk eine Konstante, die die Diskontierungsrate beschreibt, und ttt die Zeit bis zur Belohnung. Diese Diskontierung kann zu Problemen in der Entscheidungsfindung führen, insbesondere in Bereichen wie Konsumverhalten, Gesundheit und Finanzen, wo langfristige Planung erforderlich ist.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Phasenregelschleife

Ein Phase-Locked Loop (PLL) ist ein Regelkreis, der verwendet wird, um die Frequenz und Phase eines Ausgangssignals mit einem Referenzsignal zu synchronisieren. Der PLL besteht typischerweise aus drei Hauptkomponenten: einem Phasendetektor, einem Tiefpassfilter und einem spannungsgesteuerten Oszillator (VCO). Der Phasendetektor vergleicht die Phase des Ausgangssignals mit der des Referenzsignals und erzeugt eine Steuerspannung, die die Phase und Frequenz des VCO anpasst. Dadurch kann der PLL auf Änderungen im Referenzsignal reagieren und sicherstellen, dass das Ausgangssignal stets synchron bleibt.

Ein PLL findet Anwendung in verschiedenen Bereichen, darunter Kommunikationstechnik, Signalverarbeitung und Uhren-Synchronisation. Mathematisch kann die Regelung des PLL durch die Gleichung

fout=K⋅(fref+Δf)f_{out} = K \cdot (f_{ref} + \Delta f)fout​=K⋅(fref​+Δf)

beschrieben werden, wobei foutf_{out}fout​ die Ausgangsfrequenz, KKK die Verstärkung des Systems, freff_{ref}fref​ die Referenzfrequenz und Δf\Delta fΔf die Frequenzabweichung darstellt.

Biochemische Oszillatoren

Biochemische Oszillatoren sind Systeme in biologischen Prozessen, die periodische Schwankungen in Konzentrationen von Molekülen oder Reaktionen aufweisen. Diese Oszillationen können durch verschiedene Mechanismen entstehen, wie z.B. durch Rückkopplungsmechanismen in biochematischen Reaktionen. Ein bekanntes Beispiel ist der Circadian-Rhythmus, der die täglichen biologischen Prozesse von Organismen steuert.

Die mathematische Modellierung dieser Oszillatoren erfolgt häufig durch Differentialgleichungen, die die Dynamik der Reaktionen beschreiben. Ein häufig verwendetes Modell ist das Lotka-Volterra-Modell, das die Interaktion zwischen zwei Arten betrachtet, in dem eine die andere reguliert. Biochemische Oszillatoren sind entscheidend für viele Lebensprozesse, da sie die zeitliche Koordination von Stoffwechselreaktionen und anderen biologischen Funktionen ermöglichen.

Kolmogorov-Smirnov-Test

Der Kolmogorov-Smirnov Test ist ein statistisches Verfahren, das verwendet wird, um die Übereinstimmung zwischen einer empirischen Verteilung und einer theoretischen Verteilung zu überprüfen oder um zwei empirische Verteilungen miteinander zu vergleichen. Der Test basiert auf der maximalen Differenz zwischen den kumulativen Verteilungsfunktionen (CDF) der beiden Verteilungen. Die Teststatistik wird definiert als:

D=max⁡∣Fn(x)−F(x)∣D = \max |F_n(x) - F(x)|D=max∣Fn​(x)−F(x)∣

wobei Fn(x)F_n(x)Fn​(x) die empirische Verteilungsfunktion und F(x)F(x)F(x) die theoretische Verteilungsfunktion ist. Ein hoher Wert von DDD deutet darauf hin, dass die Daten nicht gut mit der angenommenen Verteilung übereinstimmen. Der Kolmogorov-Smirnov Test ist besonders nützlich, da er keine Annahmen über die spezifische Form der Verteilung macht und sowohl für stetige als auch für diskrete Verteilungen angewendet werden kann.

Karger-Schnitt

Karger’s Min Cut ist ein probabilistischer Algorithmus zur Bestimmung des minimalen Schnitts in einem ungerichteten Graphen. Der Algorithmus basiert auf der Idee, dass man wiederholt zufällig Kanten zwischen den Knoten des Graphen auswählt und diese zusammenführt, um einen neuen, kleineren Graphen zu erstellen. Durch diese Kollapsierung der Knoten werden Kanten entfernt, und der Algorithmus verfolgt dabei das Ziel, den minimalen Schnitt zu finden, der die Knoten in zwei Gruppen trennt.

Ein entscheidender Aspekt des Algorithmus ist, dass er eine Monte-Carlo-Methode verwendet, um das Ergebnis zu approximieren, was bedeutet, dass er mehrere Durchläufe benötigt, um mit hoher Wahrscheinlichkeit den tatsächlichen minimalen Schnitt zu finden. Die Laufzeit des Algorithmus beträgt O(n2log⁡n)O(n^2 \log n)O(n2logn), wobei nnn die Anzahl der Knoten im Graphen ist. Karger’s Min Cut ist besonders nützlich in großen Graphen, da er im Vergleich zu deterministischen Ansätzen oft weniger Rechenressourcen benötigt.

Gromov-Hausdorff

Der Gromov-Hausdorff-Abstand ist ein Konzept aus der Geometrie und der mathematischen Analyse, das die Ähnlichkeit zwischen metrischen Räumen quantifiziert. Er wird verwendet, um zu bestimmen, wie "nah" zwei metrische Räume zueinander sind, unabhängig von ihrer konkreten Einbettung im Raum. Der Abstand wird definiert als der minimale Abstand, den notwendig ist, um die beiden Räume in einen gemeinsamen metrischen Raum einzubetten, wobei die ursprünglichen Abstände erhalten bleiben.

Mathematisch wird der Gromov-Hausdorff-Abstand dGH(X,Y)d_{GH}(X, Y)dGH​(X,Y) zwischen zwei kompakten metrischen Räumen XXX und YYY wie folgt definiert:

dGH(X,Y)=inf⁡{dH(f(X),g(Y))}d_{GH}(X, Y) = \inf \{ d_H(f(X), g(Y)) \}dGH​(X,Y)=inf{dH​(f(X),g(Y))}

Hierbei ist fff und ggg eine Einbettung von XXX und YYY in einen gemeinsamen Raum und dHd_HdH​ der Hausdorff-Abstand zwischen den Bildmengen. Dieses Konzept ist besonders nützlich in der Differentialgeometrie und in der Theorie der verzerrten Räume, da es erlaubt, geometrische Strukturen zu vergleichen, ohne auf spezifische Koordinatensysteme angewiesen zu sein.

CNN-Schichten

Convolutional Neural Networks (CNNs) bestehen aus mehreren Schichten (Layers), die speziell für die Verarbeitung von Bilddaten entwickelt wurden. Die grundlegenden Schichten in einem CNN sind:

  1. Convolutional Layer: Diese Schicht extrahiert Merkmale aus den Eingabedaten durch Anwendung von Faltung (Convolution) mit Filtern oder Kernen. Der mathematische Prozess kann als Y=X∗W+bY = X * W + bY=X∗W+b dargestellt werden, wobei YYY das Ergebnis, XXX die Eingabe, WWW die Filter und bbb der Bias ist.

  2. Activation Layer: Nach der Faltung wird in der Regel eine Aktivierungsfunktion wie die ReLU (Rectified Linear Unit) angewendet, um nicht-lineare Eigenschaften in die Ausgaben einzuführen. Die ReLU-Funktion wird definiert als f(x)=max⁡(0,x)f(x) = \max(0, x)f(x)=max(0,x).

  3. Pooling Layer: Diese Schicht reduziert die Dimensionalität der Daten und extrahiert die wichtigsten Merkmale, um die Rechenlast zu verringern. Häufig verwendete Pooling-Methoden sind Max-Pooling und Average-Pooling.

  4. Fully Connected Layer: Am Ende des Netzwerks werden die extrahierten Merkmale in eine vollständig verbundene Schicht eingespeist, die für die Klassifizierung oder Regression der Daten verantwortlich ist. Hierbei