Die Zustandsraummodellierung ist ein fundamentales Konzept in der Regelungstechnik, das es ermöglicht, dynamische Systeme in einer mathematisch präzisen Form darzustellen. In dieser Darstellung wird das System durch einen Vektor von Zuständen beschrieben, der alle relevanten Informationen über den aktuellen Zustand des Systems enthält. Mathematisch wird ein dynamisches System durch folgende Gleichungen definiert:
Hierbei bezeichnet die Systemmatrix, die Eingabematrix, die Ausgangsmatrix und die Durchgangsmatrix. Diese Formulierung ermöglicht es, die Systemdynamik mit Hilfe von linearen Algebra-Methoden zu analysieren und verschiedene Regelungsstrategien zu entwickeln, wie z.B. Zustandsregelung und Beobachterdesign. Die Zustandsraummodellierung ist besonders nützlich, da sie Mehrgrößensysteme und nichtlineare Systeme effizient behandeln kann.
Quantum Spin Liquids sind faszinierende Zustände der Materie, die bei niedrigen Temperaturen auftreten und sich durch eine unordentliche Anordnung von Spins auszeichnen. Im Gegensatz zu klassischen magnetischen Materialien, in denen Spins in geordneten Mustern ausgerichtet sind, bleiben die Spins in einem Quantum Spin Liquid in einem dynamischen Zustand der Unordnung, sogar bei Temperaturen nahe dem absoluten Nullpunkt. Dies bedeutet, dass die Spins nicht in einen stabilen Zustand übergehen, sondern miteinander interagieren und dabei ein komplexes Wechselspiel erzeugen.
Ein bemerkenswertes Merkmal von Quantum Spin Liquids ist die Existenz von frustrierten Interaktionen, bei denen die Spins nicht gleichzeitig in energetisch günstige Zustände gebracht werden können. Dies führt zu einem Zustand, der von topologischen Eigenschaften geprägt ist, die für die Entwicklung von Quantencomputern von großem Interesse sind. Die Untersuchung von Quantum Spin Liquids bietet Einblicke in fundamentale physikalische Konzepte und hat potenzielle Anwendungen in der Materialwissenschaft und Quanteninformationstheorie.
Physics-Informed Neural Networks (PINNs) sind eine innovative Methode zur Lösung von Differentialgleichungen, die in vielen physikalischen und ingenieurtechnischen Anwendungen vorkommen. Sie kombinieren die Leistungsfähigkeit neuronaler Netzwerke mit physikalischen Gesetzen, indem sie die zugrunde liegenden physikalischen Prinzipien in den Lernprozess integrieren. Dies geschieht, indem man die Verlustfunktion des Netzwerks um einen zusätzlichen Term erweitert, der die Residuen der Differentialgleichungen misst, was bedeutet, dass das Netzwerk nicht nur die Daten lernt, sondern auch die physikalischen Gesetze berücksichtigt.
Mathematisch formuliert wird dabei häufig eine Verlustfunktion wie folgt definiert:
Hierbei steht für die Verlustfunktion, die auf den Trainingsdaten basiert, während die Abweichung von den physikalischen Gleichungen misst. Der Parameter gewichtet die Bedeutung der physikalischen Informationen im Vergleich zu den Daten. Durch diese Herangehensweise erhalten PINNs eine verbesserte Generalisierungsfähigkeit und können auch in Bereichen eingesetzt werden, in denen nur begrenzte Daten vorhanden sind.
Die Preisgestaltung finanzieller Derivate ist ein zentraler Aspekt der Finanzmärkte und umfasst Methoden zur Bewertung von Finanzinstrumenten, deren Wert von der Preisentwicklung eines zugrunde liegenden Vermögenswerts abhängt. Zu den gängigsten Derivaten gehören Optionen, Futures und Swaps. Die Bewertung dieser Instrumente erfolgt häufig mithilfe mathematischer Modelle, wobei das bekannteste Modell das Black-Scholes-Modell ist, das zur Preisbestimmung von europäischen Optionen verwendet wird.
Die Preisformel für eine europäische Call-Option lautet:
wobei der Preis der Call-Option, der aktuelle Preis des zugrunde liegenden Vermögenswerts, der Ausübungspreis, der risikofreie Zinssatz, die Zeit bis zur Fälligkeit und die kumulative Verteilungsfunktion der Standardnormalverteilung ist. Die Variablen und werden wie folgt definiert:
Die Methode der Lagrange-Multiplikatoren ist eine Technik in der Optimierung, die verwendet wird, um die Extremwerte einer Funktion unter Berücksichtigung von Nebenbedingungen zu finden. Angenommen, wir wollen die Funktion maximieren oder minimieren, während wir eine Nebenbedingung einhalten müssen. Der Schlüsselgedanke dieser Methode besteht darin, dass wir die Funktion einführen, wobei der Lagrange-Multiplikator ist.
Um die Extrempunkte zu finden, setzen wir die partiellen Ableitungen von gleich Null:
Diese Gleichungen führen zu einem System von Gleichungen, das gelöst werden muss, um die Werte von und zu bestimmen. Die Lagrange-Multiplikatoren geben dabei Hinweise darauf, wie sich die Funktion entlang der Restriktion verhält und helfen, die Beziehung zwischen den
Computational General Equilibrium (CGE) Modelle sind leistungsstarke Werkzeuge in der Wirtschaftswissenschaft, die zur Analyse der Wechselwirkungen zwischen verschiedenen Märkten und Sektoren einer Volkswirtschaft dienen. Diese Modelle basieren auf der Annahme, dass alle Märkte gleichzeitig im Gleichgewicht sind, was bedeutet, dass Angebot und Nachfrage in jedem Markt übereinstimmen. Ein typisches CGE-Modell berücksichtigt verschiedene Akteure, wie Haushalte, Unternehmen und den Staat, und analysiert deren Entscheidungen in Bezug auf Produktion, Konsum und Handel.
Die mathematische Grundlagen dieser Modelle sind oft in Form von Gleichungen formuliert, die die Beziehungen zwischen den Variablen darstellen. Zum Beispiel kann die Produktionsfunktion eines Unternehmens durch die Gleichung
beschrieben werden, wobei die produzierte Menge, das Kapital und die Arbeit darstellt. CGE-Modelle ermöglichen es Ökonomen, die Auswirkungen von politischen Maßnahmen, technologischen Veränderungen oder externen Schocks auf die gesamte Wirtschaft zu simulieren, wodurch sie wertvolle Einblicke in die Komplexität wirtschaftlicher Systeme bieten.
Brain Connectomics ist ein interdisziplinäres Forschungsfeld, das sich mit der detaillierten Kartierung und Analyse der neuronalen Verbindungen im Gehirn beschäftigt. Es untersucht, wie verschiedene Hirnregionen miteinander verknüpft sind und wie diese Verbindungen das Verhalten, die Kognition und die Wahrnehmung beeinflussen. Ein zentrales Ziel der Brain Connectomics ist es, ein umfassendes Netzwerkmodell des Gehirns zu entwickeln, das sowohl die strukturellen als auch die funktionalen Verbindungen berücksichtigt. Hierbei werden Technologien wie Diffusions-Tensor-Bildgebung (DTI) und funktionelle Magnetresonanztomographie (fMRI) eingesetzt, um die komplexen neuronalen Netzwerke zu visualisieren. Die Ergebnisse dieser Forschung könnten wichtige Einblicke in neuropsychiatrische Erkrankungen bieten und zur Entwicklung gezielterer Therapieansätze beitragen.