StudierendeLehrende

Krylov Subspace

Der Krylov-Unterraum ist ein Konzept aus der numerischen Mathematik, das vor allem in der Lösung von linearen Systemen und Eigenwertproblemen Anwendung findet. Er wird durch wiederholte Multiplikation einer gegebenen Matrix AAA mit einem Vektor bbb erzeugt. Formal wird der kkk-te Krylov-Unterraum definiert als:

Kk(A,b)=span{b,Ab,A2b,…,Ak−1b}K_k(A, b) = \text{span}\{ b, Ab, A^2b, \ldots, A^{k-1}b \}Kk​(A,b)=span{b,Ab,A2b,…,Ak−1b}

Hierbei ist span\text{span}span der Spann eines Vektorraums, der alle Linearkombinationen der angegebenen Vektoren umfasst. Krylov-Unterräume sind besonders nützlich, weil sie oft die wichtigsten Informationen über das Verhalten der Matrix AAA enthalten. Viele iterative Verfahren, wie das GMRES (Generalized Minimal Residual Method) oder das Lanczos-Verfahren, nutzen diese Unterräume, um die Lösung effizienter zu approximieren. In der Praxis ermöglicht die Dimension des Krylov-Unterraums eine Reduzierung der Komplexität bei der Berechnung von Lösungen für große, spärlich besetzte Matrizen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Suffix-Automat

Ein Suffix Automaton ist eine spezielle Art von endlichem Automaten, der verwendet wird, um die Suffixe einer gegebenen Zeichenkette effizient zu analysieren. Es handelt sich um einen deterministischen endlichen Automaten (DEA), der alle möglichen Suffixe einer Zeichenkette in einer kompakten Form speichert. Der Suffix Automaton hat folgende Eigenschaften:

  • Er hat genau 2n−12n - 12n−1 Zustände, wenn die Eingabezeichenkette nnn Zeichen lang ist.
  • Jeder Zustand repräsentiert ein Suffix der Eingabezeichenkette, wobei die Übergänge zwischen den Zuständen die möglichen Erweiterungen dieser Suffixe darstellen.
  • Der Automat ist minimal, was bedeutet, dass er die kleinste Anzahl an Zuständen für die gegebene Sprache hat.

Die Verwendung eines Suffix Automaton ermöglicht effiziente Operationen wie das Suchen von Mustern, das Zählen von Suffixen und das Bestimmen von gemeinsamen Suffixen in verschiedenen Zeichenketten, was ihn zu einem mächtigen Werkzeug in der Algorithmik und Theoretischen Informatik macht.

Magnetokalorischer Effekt

Der magnetokalorische Effekt beschreibt die Temperaturänderung eines Materials, wenn es in ein externes Magnetfeld gebracht wird oder dieses entfernt wird. Bei ferromagnetischen Materialien führt die Anordnung der magnetischen Momente unter dem Einfluss eines Magnetfeldes zu einer Änderung der thermodynamischen Eigenschaften. Wenn das Material in ein Magnetfeld gebracht wird, ordnen sich die magnetischen Momente parallel zum Feld aus, was eine Erwärmung des Materials zur Folge hat. Entfernt man das Magnetfeld, kehren die Momente in ihre ungeordnete Anordnung zurück, was zu einer Abkühlung führt.

Dieser Effekt wird in der Regel durch die Änderung der Entropie des Systems beschrieben und kann mathematisch durch die Beziehung zwischen Entropie SSS, Magnetfeld BBB und Temperatur TTT ausgedrückt werden. Besonders in der Kühltechnik wird der magnetokalorische Effekt genutzt, um effizientere Kühlsysteme zu entwickeln, die weniger Energie verbrauchen und umweltfreundlicher sind.

Totale Variation in der Variationsrechnung

Die Total Variation ist ein wichtiges Konzept in der Variationsrechnung, das sich mit der Messung der „Schwankungen“ einer Funktion beschäftigt. Sie quantifiziert, wie stark eine Funktion von einem Punkt zum anderen variiert, und wird häufig verwendet, um das Verhalten von Funktionen zu analysieren, die in Anwendungen wie Bildverarbeitung oder Optimierung vorkommen.

Formal wird die totale Variation einer Funktion f:[a,b]→Rf: [a, b] \to \mathbb{R}f:[a,b]→R durch den Ausdruck

V(f,[a,b])=sup⁡∑i=1n∣f(xi)−f(xi−1)∣V(f, [a, b]) = \sup \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|V(f,[a,b])=supi=1∑n​∣f(xi​)−f(xi−1​)∣

definiert, wobei die Supremumsbildung über alle möglichen Zerlegungen a=x0<x1<…<xn=ba = x_0 < x_1 < \ldots < x_n = ba=x0​<x1​<…<xn​=b erfolgt. Eine Funktion hat endliche totale Variation, wenn dieser Wert endlich ist, was auch impliziert, dass die Funktion fast überall differenzierbar ist und ihre Ableitung in einem Lebesgue-sinn existiert. Die totale Variation spielt eine zentrale Rolle in der Analyse von Minimierungsproblemen, da sie oft als Maß für die „Glätte“ oder „Regelmäßigkeit“ einer Lösung verwendet wird.

Molekulardocking-Scoring

Molecular Docking Scoring ist eine computergestützte Methode, die verwendet wird, um die Affinität und Bindungsstärke zwischen einem Protein und einem Liganden zu bewerten. Dieser Prozess beinhaltet die Simulation der Interaktion zwischen den beiden Molekülen, wobei verschiedene energetische und geometrische Parameter berücksichtigt werden. Die Score-Funktion, die typischerweise verwendet wird, kombiniert verschiedene Beiträge wie elektrostatische Wechselwirkungen, Van-der-Waals-Kräfte und hydrophobe Effekte, um einen Gesamtwert zu berechnen. Diese Bewertung ermöglicht es, die besten Bindungsmodi vorherzusagen und Liganden zu identifizieren, die potenziell als Arzneimittel wirken können. Die Genauigkeit der Vorhersagen kann durch die Validierung mit experimentellen Daten und die Anwendung fortschrittlicher Algorithmen, wie z.B. maschinelles Lernen, weiter verbessert werden. In der Praxis ist der Scoring-Wert entscheidend, um die vielversprechendsten Kandidaten für die weitere Entwicklung auszuwählen.

Pulsweitenmodulationseffizienz

Die Pulse-Width Modulation (PWM) Efficiency beschreibt, wie effektiv ein PWM-System elektrische Energie in nutzbare Leistung umwandelt. PWM ist eine Technik, die häufig in der Leistungselektronik verwendet wird, um die Leistung an elektrische Lasten wie Motoren oder Beleuchtung zu steuern. Die Effizienz wird häufig anhand des Verhältnisses der durchschnittlichen Ausgangsleistung zur eingespeisten Leistung quantifiziert. Mathematisch kann dies durch die Formel

Effizienz(%)=(PoutPin)×100\text{Effizienz} (\%) = \left( \frac{P_{\text{out}}}{P_{\text{in}}} \right) \times 100Effizienz(%)=(Pin​Pout​​)×100

ausgedrückt werden, wobei PoutP_{\text{out}}Pout​ die Ausgabe- und PinP_{\text{in}}Pin​ die Eingangsleistung darstellt. Eine hohe PWM-Effizienz ist entscheidend, um den Energieverbrauch zu minimieren und die Wärmeentwicklung zu reduzieren, was die Lebensdauer der Komponenten verlängert. Faktoren, die die PWM-Effizienz beeinflussen, sind unter anderem die Schaltfrequenz, die Qualität der verwendeten Bauteile sowie die Lastbedingungen.

Spieltheorie-Gleichgewicht

In der Spieltheorie bezeichnet das Konzept des Gleichgewichts einen Zustand, in dem die Strategien aller Spieler optimal aufeinander abgestimmt sind, sodass keiner der Spieler einen Anreiz hat, seine Strategie einseitig zu ändern. Das bekannteste Gleichgewicht ist das Nash-Gleichgewicht, benannt nach John Nash, das auftritt, wenn jeder Spieler die beste Antwort auf die Strategien der anderen wählt. In einem solchen Gleichgewicht sind die Entscheidungen der Spieler stabil, und es gibt keine Möglichkeit, durch eine Änderung der Strategie einen höheren Nutzen zu erzielen. Mathematisch wird ein Nash-Gleichgewicht oft als ein Paar von Strategien (s1∗,s2∗)(s_1^*, s_2^*)(s1∗​,s2∗​) dargestellt, bei dem für jeden Spieler iii gilt:

ui(s1∗,s2∗)≥ui(s1,s2∗)u_i(s_1^*, s_2^*) \geq u_i(s_1, s_2^*)ui​(s1∗​,s2∗​)≥ui​(s1​,s2∗​)

für alle möglichen Strategien s1s_1s1​ und s2s_2s2​ der anderen Spieler. Spieltheoretisches Gleichgewicht ist von zentraler Bedeutung in der Wirtschaft, da es hilft, das Verhalten von Individuen und Firmen in strategischen Interaktionen zu verstehen und vorherzusagen.