StudierendeLehrende

Keynesian Fiscal Multiplier

Der Keynesianische Fiskalmultiplikator ist ein wirtschaftliches Konzept, das beschreibt, wie Veränderungen in der Staatsausgaben oder Besteuerung das Gesamteinkommen einer Volkswirtschaft beeinflussen. Wenn die Regierung beispielsweise die Ausgaben erhöht, führt dies zu einer direkten Erhöhung der Gesamtnachfrage, was wiederum Unternehmen dazu anregt, mehr zu produzieren und Arbeitsplätze zu schaffen. Der Multiplikator-Effekt entsteht, weil die zusätzlichen Einkommen, die durch diese Ausgaben generiert werden, wiederum zu weiteren Ausgaben führen.

Der Fiskalmultiplikator kann mathematisch als Verhältnis der Änderung des Gesamteinkommens (ΔY\Delta YΔY) zur Änderung der Staatsausgaben (ΔG\Delta GΔG) dargestellt werden:

k=ΔYΔGk = \frac{\Delta Y}{\Delta G}k=ΔGΔY​

Dabei steht kkk für den Multiplikator. Ein höherer Multiplikator bedeutet, dass die Wirkung der Staatsausgaben auf das Gesamteinkommen stärker ist. In der Praxis variiert der Fiskalmultiplikator je nach wirtschaftlichen Bedingungen, wie z.B. der Höhe der Arbeitslosigkeit oder der Kapazitätsauslastung der Wirtschaft.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Binomialmodell

Das Binomial Pricing ist ein Modell zur Bewertung von Finanzderivaten, insbesondere Optionen. Es basiert auf der Annahme, dass der Preis eines Basiswerts in diskreten Zeitintervallen entweder steigt oder fällt, wodurch ein binomialer Baum entsteht. In jedem Schritt des Modells wird der Preis des Basiswerts um einen bestimmten Faktor uuu (bei Anstieg) und um einen anderen Faktor ddd (bei Fall) verändert.

Die Wahrscheinlichkeiten für den Anstieg und den Fall werden oft als ppp und 1−p1-p1−p definiert. Um den aktuellen Wert einer Option zu berechnen, wird die erwartete Auszahlung in der Zukunft unter Berücksichtigung dieser Wahrscheinlichkeiten diskontiert. Der Vorteil des Binomialmodells liegt in seiner Flexibilität, da es für verschiedene Arten von Optionen und sogar für komplizierte Derivate angewendet werden kann. In der Praxis wird das Modell häufig genutzt, um den Preis von europäischen und amerikanischen Optionen zu bestimmen.

Renormierungsgruppe

Die Renormalization Group (RG) ist ein fundamentales Konzept in der theoretischen Physik, insbesondere in der Quantenfeldtheorie und statistischen Physik. Sie beschreibt, wie physikalische Systeme auf verschiedenen Skalen betrachtet werden können und wie die Eigenschaften eines Systems bei Änderung der Skala transformiert werden. Der RG-Ansatz beinhaltet die Systematisierung der Effekte von hochfrequenten Fluktuationen und zeigt, dass viele physikalische Systeme universelle Eigenschaften aufweisen, die unabhängig von den Details der spezifischen Wechselwirkungen sind.

Ein zentrales Element der Renormalization Group ist der Prozess der Renormalisierung, bei dem divergente Größen wie die Energie oder die Kopplungskonstante umdefiniert werden, um sinnvolle, endliche Werte zu erhalten. Mathematisch wird dieser Prozess oft durch Flussgleichungen beschrieben, die die Veränderung der Parameter eines Systems in Abhängigkeit von der Skala darstellen, was durch die Gleichung

dgdℓ=β(g)\frac{d g}{d \ell} = \beta(g)dℓdg​=β(g)

ausgedrückt wird, wobei ggg die Kopplungskonstante und ℓ\ellℓ die Logarithmus der Skala ist. Die RG-Techniken ermöglichen es Physikern, kritische Phänomene und Phasenübergänge zu untersuchen, indem sie das Verhalten von Systemen in der Nähe krit

Metabolische Flussbilanz

Metabolic Flux Balance (MFB) ist eine mathematische Methode zur Analyse von Stoffwechselnetzwerken in biologischen Systemen. Sie basiert auf der Annahme, dass der metabolische Fluss, also der Transport von Metaboliten durch verschiedene biochemische Reaktionen, in einem stationären Zustand ist. In diesem Zustand sind die Eingänge und Ausgänge von Metaboliten gleich, was bedeutet, dass die Gesamtbilanz der Reaktionen gleich Null ist. Mathematisch wird dies oft durch Gleichungen dargestellt, die die Flüsse viv_ivi​ der einzelnen Reaktionen beschreiben, sodass gilt:

∑ivi=0\sum_{i} v_i = 0i∑​vi​=0

Diese Methode ist besonders nützlich in der Systembiologie und Biotechnologie, um Vorhersagen über Zellverhalten zu treffen und Optimierungen für die Produktion von Metaboliten zu ermöglichen. MFB wird häufig in Kombination mit experimentellen Daten eingesetzt, um Modelle zu validieren und die Effizienz von Stoffwechselwegen zu verbessern.

Variationsinferenztechniken

Variational Inference (VI) ist ein leistungsfähiges Verfahren zur Approximation von posterioren Verteilungen in probabilistischen Modellen. Anstatt die komplexe, oft analytisch nicht lösbare posterior Verteilung direkt zu berechnen, wird ein einfacherer, parametrischer Verteilungsfamilie q(θ;ϕ)q(\theta; \phi)q(θ;ϕ) gewählt, die durch die Variablen ϕ\phiϕ parametrisiert wird. Das Ziel von VI ist es, die Parameter ϕ\phiϕ so zu optimieren, dass die Kullback-Leibler-Divergenz zwischen der gewählten Verteilung und der tatsächlichen posterioren Verteilung minimiert wird:

DKL(q(θ;ϕ)∥p(θ∣x))=∫q(θ;ϕ)log⁡q(θ;ϕ)p(θ∣x)dθD_{KL}(q(\theta; \phi) \| p(\theta | x)) = \int q(\theta; \phi) \log \frac{q(\theta; \phi)}{p(\theta | x)} d\thetaDKL​(q(θ;ϕ)∥p(θ∣x))=∫q(θ;ϕ)logp(θ∣x)q(θ;ϕ)​dθ

Durch Minimierung dieser Divergenz wird die Approximation verbessert. VI ist besonders nützlich in großen Datensätzen und komplexen Modellen, wo traditionelle Methoden wie Markov-Chain-Monte-Carlo (MCMC) ineffizient sein können. Zu den gängigen VI-Techniken gehören Mean-Field Approximation, bei der die Unabhängigkeit der Variablen angenommen wird, und Stochastic Variational Inference, das stochastische Optimierung verwendet, um die Eff

Bioinformatik-Algorithmus-Design

Die Algorithmusgestaltung in der Bioinformatik befasst sich mit der Entwicklung effizienter mathematischer und computerbasierter Methoden zur Analyse biologischer Daten. Diese Algorithmen sind entscheidend für Anwendungen wie die Genomsequenzierung, Proteinfaltung und das Verständnis von biologischen Netzwerken. Ein zentraler Aspekt ist die Optimierung der Rechenzeit und des Speicherbedarfs, da biologische Datensätze oft extrem groß und komplex sind. Zu den häufig verwendeten Techniken gehören dynamische Programmierung, Graphentheorie und Maschinelles Lernen, die es ermöglichen, Muster und Beziehungen in den Daten zu erkennen. Darüber hinaus müssen die Algorithmen oft an spezifische biologische Fragestellungen angepasst werden, um präzise und relevante Ergebnisse zu liefern.

Thermische Ausdehnung

Thermische Ausdehnung beschreibt das Phänomen, bei dem sich Stoffe bei Erwärmung ausdehnen und bei Abkühlung zusammenziehen. Diese Veränderung im Volumen oder in den Abmessungen eines Materials ist auf die erhöhte kinetische Energie der Teilchen zurückzuführen, die bei höheren Temperaturen stärker schwingen. Es gibt verschiedene Formen der thermischen Ausdehnung, darunter:

  • Längenausdehnung: Bei festen Stoffen führt eine Temperaturerhöhung zu einer Verlängerung der Längenmaße.
  • Flächenexpansion: Diese bezieht sich auf die Änderung der Oberfläche eines Materials.
  • Volumenausdehnung: Diese tritt in Flüssigkeiten und Gasen auf und beschreibt die Veränderung des gesamten Volumens.

Die mathematische Beziehung, die die Längenausdehnung beschreibt, wird durch die Formel ΔL=α⋅L0⋅ΔT\Delta L = \alpha \cdot L_0 \cdot \Delta TΔL=α⋅L0​⋅ΔT gegeben, wobei ΔL\Delta LΔL die Änderung der Länge, α\alphaα der lineare Ausdehnungskoeffizient, L0L_0L0​ die ursprüngliche Länge und ΔT\Delta TΔT die Temperaturänderung ist. Dieses Konzept ist in vielen Anwendungen von entscheidender Bedeutung, beispielsweise beim Bau von Brücken und Schienen, um sicherzustellen, dass die Materialien sich bei Temperaturänderungen entsprechend verhalten.