Die Laplace-Transformation ist ein wichtiges mathematisches Werkzeug, das in der Ingenieurwissenschaft und Mathematik verwendet wird, um Differentialgleichungen zu lösen und Systeme zu analysieren. Sie wandelt eine Funktion , die von der Zeit abhängt, in eine Funktion , die von einer komplexen Frequenz abhängt, um. Die allgemeine Form der Laplace-Transformation ist gegeben durch die Gleichung:
Hierbei ist der Dämpfungsfaktor, der hilft, das Verhalten der Funktion im Zeitbereich zu steuern. Die Transformation ist besonders nützlich, da sie die Lösung von Differentialgleichungen in algebraische Gleichungen umwandelt, was die Berechnungen erheblich vereinfacht. Die Rücktransformation, die als Inverse Laplace-Transformation bekannt ist, ermöglicht es, die ursprüngliche Funktion aus zurückzugewinnen.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.