StudierendeLehrende

Actuator Saturation

Actuator Saturation bezeichnet den Zustand, in dem ein Aktuator (z. B. Motor oder Hydraulikzylinder) seine maximalen oder minimalen Betriebsgrenzen erreicht und nicht mehr in der Lage ist, das gewünschte Signal oder die gewünschte Bewegung auszuführen. In diesem Zustand kann der Aktuator nicht mehr proportional auf Steuerbefehle reagieren, was zu einer Verzerrung der Systemleistung führt.

Diese Sättigung kann in verschiedenen Systemen auftreten, wie zum Beispiel in Regelkreisen, wo die Eingabe über die physikalischen Grenzen des Aktuators hinausgeht. Wenn der Aktuator gesättigt ist, kann dies zu Schwankungen oder Instabilität im System führen, da die Regelung nicht mehr effektiv arbeiten kann. In mathematischen Modellen wird dies häufig durch die Verwendung von Funktionen dargestellt, die die Begrenzungen des Aktuators berücksichtigen, wie zum Beispiel:

usat={uwenn ∣u∣<umaxumaxwenn u>umaxuminwenn u<uminu_{\text{sat}} = \begin{cases} u & \text{wenn } |u| < u_{\text{max}} \\ u_{\text{max}} & \text{wenn } u > u_{\text{max}} \\ u_{\text{min}} & \text{wenn } u < u_{\text{min}} \end{cases}usat​=⎩⎨⎧​uumax​umin​​wenn ∣u∣<umax​wenn u>umax​wenn u<umin​​

Hierbei ist uuu das Steuersignal, während $ u_{\text

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Nachhaltige Geschäftsstrategien

Nachhaltige Geschäftsstrategien sind Ansätze, die Unternehmen entwickeln, um wirtschaftlichen Erfolg mit ökologischen und sozialen Verantwortlichkeiten in Einklang zu bringen. Diese Strategien zielen darauf ab, Ressourcenschonung, Umweltfreundlichkeit und soziale Gerechtigkeit in die Kerngeschäftsprozesse zu integrieren. Beispielsweise können Unternehmen durch den Einsatz erneuerbarer Energien, die Reduzierung von Abfall und die Förderung fairer Arbeitspraktiken nicht nur ihre Umweltbilanz verbessern, sondern auch das Vertrauen der Kunden gewinnen und langfristige Wettbewerbsfähigkeit sichern. Zu den häufig verwendeten Methoden gehören:

  • Kreislaufwirtschaft: Produkte so gestalten, dass sie wiederverwendbar oder recycelbar sind.
  • Nachhaltige Beschaffung: Lieferanten auswählen, die umweltfreundliche Praktiken anwenden.
  • Soziale Verantwortung: Engagement in der Gemeinschaft und faire Arbeitsbedingungen fördern.

Durch die Implementierung nachhaltiger Strategien können Unternehmen nicht nur ihre Betriebskosten senken, sondern auch neue Marktchancen erschließen und sich als Vorreiter in ihrer Branche positionieren.

Stochastischer Abzinsungsfaktor Asset Pricing

Das Konzept des Stochastic Discount Factor (SDF) Asset Pricing ist ein zentraler Bestandteil der modernen Finanzwirtschaft und dient zur Bewertung von Vermögenswerten unter Unsicherheit. Der SDF, oft auch als stochastischer Abzinsungsfaktor bezeichnet, ist ein Faktor, der zukünftige Cashflows auf ihren gegenwärtigen Wert abbildet, indem er die Unsicherheit und das Risiko, die mit diesen Cashflows verbunden sind, berücksichtigt. Mathematisch wird der SDF oft als MtM_tMt​ dargestellt, wobei ttt den Zeitpunkt angibt. Die Grundidee ist, dass der Preis eines Vermögenswerts PtP_tPt​ als der erwartete Wert der zukünftigen Cashflows Ct+1C_{t+1}Ct+1​, abgezinst mit dem SDF, ausgedrückt werden kann:

Pt=E[MtCt+1]P_t = \mathbb{E}[M_{t} C_{t+1}]Pt​=E[Mt​Ct+1​]

Hierbei steht E\mathbb{E}E für den Erwartungswert. Der SDF ist entscheidend, weil er die Risikoeinstellungen der Investoren sowie die Marktbedingungen reflektiert. Dieses Modell ermöglicht es, die Preise von Vermögenswerten in einem dynamischen Umfeld zu analysieren und zu verstehen, wie Risikofaktoren die Renditen beeinflussen.

Cobb-Douglas

Die Cobb-Douglas-Produktionsfunktion ist ein zentrales Konzept in der Mikroökonomie, das die Beziehung zwischen Inputfaktoren und dem Output eines Unternehmens beschreibt. Sie wird häufig in der Form Q=A⋅Lα⋅KβQ = A \cdot L^\alpha \cdot K^\betaQ=A⋅Lα⋅Kβ dargestellt, wobei QQQ die produzierte Menge ist, AAA ein technischer Effizienzfaktor, LLL die Menge an Arbeit, KKK die Menge an Kapital, und α\alphaα sowie β\betaβ die Outputelastizitäten von Arbeit und Kapital darstellen.

Diese Funktion zeigt, dass der Output (Q) durch die Kombination von Arbeit (L) und Kapital (K) erzeugt wird, wobei die Werte von α\alphaα und β\betaβ die relativen Beiträge der beiden Inputs zur Gesamtproduktion angeben. Eine interessante Eigenschaft der Cobb-Douglas-Funktion ist ihre homogene Natur, was bedeutet, dass eine proportionale Erhöhung aller Inputfaktoren zu einer proportionalen Erhöhung des Outputs führt. Diese Funktion wird oft verwendet, um Effizienz und Skalenerträge in verschiedenen Produktionsprozessen zu analysieren.

Proteinfaltungstabilität

Die Stabilität der Protein-Faltung bezieht sich auf die Fähigkeit eines Proteins, seine spezifische dreidimensionale Struktur aufrechtzuerhalten, die für seine Funktion entscheidend ist. Dieser Prozess wird stark von der chemischen Umgebung, den intermolekularen Wechselwirkungen und der Aminosäuresequenz des Proteins beeinflusst. Die Stabilität kann durch verschiedene Faktoren beeinflusst werden, darunter Temperatur, pH-Wert und die Anwesenheit von anderen Molekülen.

Die energetische Stabilität eines gefalteten Proteins kann oft durch die Gibbs freie Energie (ΔG\Delta GΔG) beschrieben werden, wobei ein negatives ΔG\Delta GΔG auf eine thermodynamisch günstige Faltung hinweist. Die Faltung wird durch eine Vielzahl von Wechselwirkungen stabilisiert, wie z.B. Wasserstoffbrücken, ionische Bindungen und hydrophobe Wechselwirkungen. Wenn diese stabilisierenden Faktoren gestört oder vermindert werden, kann es zu einer Fehlfaltung oder Denaturierung des Proteins kommen, was schwerwiegende Auswirkungen auf die biologischen Funktionen haben kann.

Ito-Kalkül

Der Ito-Kalkül ist ein fundamentales Konzept in der stochastischen Analysis, das vor allem in der Finanzmathematik Anwendung findet. Er wurde von dem japanischen Mathematiker Kiyoshi Ito entwickelt und ermöglicht die Integration und Differentiation von stochastischen Prozessen, insbesondere von Wiener-Prozessen oder Brownian Motion. Im Gegensatz zur klassischen Analysis, die auf deterministischen Funktionen basiert, behandelt der Ito-Kalkül Funktionen, die von zufälligen Bewegungen abhängen, was zu einzigartigen Eigenschaften führt, wie der berühmten Ito-Formel. Diese Formel besagt, dass für eine Funktion f(t,Xt)f(t, X_t)f(t,Xt​), wobei XtX_tXt​ ein stochastischer Prozess ist, gilt:

df(t,Xt)=(∂f∂t+12∂2f∂x2σ2(t,Xt))dt+∂f∂xσ(t,Xt)dWtdf(t, X_t) = \left( \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2} \sigma^2(t, X_t) \right) dt + \frac{\partial f}{\partial x} \sigma(t, X_t) dW_tdf(t,Xt​)=(∂t∂f​+21​∂x2∂2f​σ2(t,Xt​))dt+∂x∂f​σ(t,Xt​)dWt​

Hierbei ist dWtdW_tdWt​ der Wiener-Prozess. Der Ito-Kalkül ist besonders nützlich, um Modelle für Finanzderivate zu entwickeln und um die Dynamik von Aktienpreisen zu beschreiben.

Cournot-Wettbewerb

Die Cournot-Wettbewerb ist ein Modell der Oligopoltheorie, das von dem französischen Ökonomen Antoine Augustin Cournot im Jahr 1838 entwickelt wurde. In diesem Modell konkurrieren Unternehmen um die Menge, die sie produzieren, und gehen davon aus, dass die Menge der anderen Unternehmen konstant bleibt. Jedes Unternehmen maximiert seinen eigenen Gewinn, indem es seine Produktionsmenge wählt, wobei es die Reaktion der Wettbewerber berücksichtigt. Der Gleichgewichtspreis wird durch die gesamte produzierte Menge auf dem Markt bestimmt, was zu einem sogenannten Cournot-Gleichgewicht führt, bei dem kein Unternehmen einen Anreiz hat, seine Produktionsmenge einseitig zu ändern.

Die mathematische Darstellung kann wie folgt aussehen: Sei q1q_1q1​ die Produktionsmenge von Unternehmen 1 und q2q_2q2​ die von Unternehmen 2. Der Marktpreis PPP hängt von der Gesamtmenge Q=q1+q2Q = q_1 + q_2Q=q1​+q2​ ab, typischerweise in der Form P(Q)=a−bQP(Q) = a - bQP(Q)=a−bQ, wobei aaa und bbb positive Konstanten sind. In diesem Kontext trifft jedes Unternehmen die Entscheidung, indem es die Reaktionsfunktion des anderen Unternehmens berücksichtigt, was zu einem stabilen Gleichgewicht führt.