Ein Lindelöf-Raum ist ein topologischer Raum, der eine wichtige Eigenschaft in der Topologie aufweist: Jede offene Überdeckung des Raumes hat eine countable (abzählbare) Teilüberdeckung. Das bedeutet, dass aus einer Sammlung von offenen Mengen, die den Raum vollständig abdecken, immer eine abzählbare Teilmenge existiert, die ebenfalls den Raum abdeckt. Diese Eigenschaft ist besonders nützlich, da sie in vielen Anwendungen der Analysis und der Funktionalanalysis eine Rolle spielt.
Eine interessante Tatsache ist, dass jeder kompakte Raum automatisch ein Lindelöf-Raum ist, da jede offene Überdeckung eines kompakten Raumes eine endliche Teilüberdeckung hat, die auch abzählbar ist. Außerdem ist jeder Hausdorff-Raum (ein Raum, in dem für zwei verschiedene Punkte disjunkte Nachbarschaften existieren) nicht unbedingt Lindelöf, aber wenn er lokal kompakt ist, dann erfüllt er auch die Lindelöf-Eigenschaft.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.