StudierendeLehrende

Mach Number

Die Mach-Zahl ist eine dimensionslose Größe, die das Verhältnis der Geschwindigkeit eines Objekts zur Schallgeschwindigkeit in dem Medium beschreibt, durch das es sich bewegt. Sie wird häufig in der Aerodynamik verwendet, um den Zustand eines Objekts zu klassifizieren, das sich durch Luft oder andere Gase bewegt. Die Mach-Zahl MMM wird definiert als:

M=vcM = \frac{v}{c}M=cv​

wobei vvv die Geschwindigkeit des Objekts und ccc die Schallgeschwindigkeit im jeweiligen Medium ist. Eine Mach-Zahl von M<1M < 1M<1 bezeichnet subsonische Geschwindigkeiten, während M=1M = 1M=1 die Schallgeschwindigkeit darstellt. Geschwindigkeiten über M=1M = 1M=1 sind als supersonisch bekannt, und bei M>5M > 5M>5 spricht man von hypersonischen Geschwindigkeiten. Die Mach-Zahl ist entscheidend für das Verständnis von Strömungsmechanik, insbesondere bei der Gestaltung von Flugzeugen und Raketen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Quantum-Zeno-Effekt

Der Quantum Zeno Effect beschreibt ein faszinierendes Phänomen der Quantenmechanik, bei dem die Beobachtung eines quantenmechanischen Systems dessen Zeitentwicklung beeinflussen kann. Genauer gesagt, wenn ein System häufig gemessen oder beobachtet wird, wird die Wahrscheinlichkeit, dass es in einen anderen Zustand wechselt, stark verringert. Dies führt dazu, dass das System in seinem ursprünglichen Zustand "eingefroren" bleibt, obwohl es sich ohne Messungen normal weiterentwickeln würde.

Mathematisch lässt sich dieses Phänomen durch die Schrödinger-Gleichung und die Kopenhagener Deutung der Quantenmechanik erklären, wobei die Häufigkeit der Messungen den Übergang von einem Zustand zu einem anderen beeinflusst. Der Effekt ist besonders relevant in der Quanteninformationstheorie und hat Anwendungen in der Entwicklung quantenmechanischer Computer. Zusammengefasst zeigt der Quantum Zeno Effect, dass die Akt der Messung nicht nur Informationen liefert, sondern auch die Dynamik des Systems selbst beeinflusst.

Hits-Algorithmus Autoritätsranking

Der HITS-Algorithmus (Hyperlink-Induced Topic Search) ist ein Ranking-Algorithmus, der von Jon Kleinberg entwickelt wurde, um die Autorität und den Hub einer Webseite zu bewerten. Er unterscheidet zwischen zwei Arten von Knoten in einem Netzwerk: Autoritäten, die qualitativ hochwertige Informationen bereitstellen, und Hubs, die viele Links zu diesen Autoritäten enthalten. Der Algorithmus arbeitet iterativ und aktualisiert die Werte für Autorität und Hub basierend auf den Verlinkungen im Netzwerk.

Mathematisch wird dies oft durch zwei Gleichungen dargestellt:

ai=∑j∈H(i)hja_i = \sum_{j \in H(i)} h_jai​=j∈H(i)∑​hj​ hi=∑j∈A(i)ajh_i = \sum_{j \in A(i)} a_jhi​=j∈A(i)∑​aj​

Hierbei steht aia_iai​ für den Autoritätswert der Seite iii, hih_ihi​ für den Hubwert der Seite iii, H(i)H(i)H(i) für die Hubs, die auf Seite iii verlinken, und A(i)A(i)A(i) für die Autoritäten, auf die Seite iii verlinkt. Durch diese Iteration wird ein Gleichgewicht erreicht, das eine präzise Einschätzung der Relevanz der Seiten im Kontext ihrer Verlinkungen ermöglicht.

Zeeman-Effekt

Der Zeeman-Effekt beschreibt das Phänomen, bei dem sich die Spektrallinien eines Atoms oder Moleküls aufspalten, wenn es sich in einem externen Magnetfeld befindet. Dieses Verhalten tritt auf, weil das Magnetfeld die Energieniveaus der elektronischen Zustände beeinflusst und somit die Übergänge zwischen diesen Zuständen verändert. Es gibt zwei Hauptarten des Zeeman-Effekts: den normalen und den anomalem Zeeman-Effekt.

  • Normaler Zeeman-Effekt: Tritt auf, wenn das Magnetfeld schwach ist und die Energieaufspaltung proportional zur magnetischen Quantenzahl mmm ist.
  • Anomaler Zeeman-Effekt: Tritt auf, wenn das Magnetfeld stärker ist und die Aufspaltung komplexer ist, da sie auch von der Spinquantenzahl abhängt.

Die mathematische Beschreibung des Zeeman-Effekts kann oft durch die Gleichung

E=E0+μBBmE = E_0 + \mu_B B mE=E0​+μB​Bm

ausgedrückt werden, wobei E0E_0E0​ die Energie im Fehlen des Magnetfeldes, μB\mu_BμB​ die Bohrsche Magneton, BBB die Stärke des Magnetfeldes und mmm die magnetische Quantenzahl ist. Der Zeeman-Effekt ist nicht nur ein wichtiges Konzept in

Multi-Agent Deep Rl

Multi-Agent Deep Reinforcement Learning (MADRL) ist ein Bereich des maschinellen Lernens, der sich mit der Interaktion und Koordination mehrerer Agenten in einer gemeinsamen Umgebung beschäftigt. Diese Agenten lernen, durch Interaktionen mit der Umwelt und untereinander, optimale Strategien zu entwickeln, um bestimmte Ziele zu erreichen. Im Gegensatz zu traditionellen Reinforcement-Learning-Ansätzen, die sich auf einen einzelnen Agenten konzentrieren, erfordert MADRL die Berücksichtigung von Kooperation und Wettbewerb zwischen den Agenten.

Die Herausforderung besteht darin, dass die Entscheidungen eines Agenten nicht nur seine eigene Belohnung beeinflussen, sondern auch die der anderen Agenten. Oft wird ein tiefes neuronales Netzwerk verwendet, um die Policy oder den Wert eines Agenten in einer hochdimensionalen Aktions- und Zustandsumgebung zu approximieren. Die mathematische Formulierung eines MADRL-Problems kann durch die Verwendung von Spieltheorie unterstützt werden, wobei die Auszahlung für jeden Agenten als Funktion der Strategien aller Agenten definiert ist. Das Ziel ist es, in einer dynamischen und oft nicht-stationären Umgebung zu lernen, in der die Strategien der anderen Agenten die optimale Strategie eines jeden Agenten beeinflussen.

Optimalsteuerungs-Riccati-Gleichung

Die Riccati-Gleichung ist ein zentrales Element in der optimalen Steuerungstheorie, insbesondere bei der Lösung von Problemen mit quadratischen Kostenfunktionen. Sie beschreibt die Beziehung zwischen dem Zustand eines dynamischen Systems und der optimalen Steuerung, die angewendet werden sollte, um die Kosten zu minimieren. In ihrer klassischen Form wird die Riccati-Gleichung oft als

P=ATP+PA−PBR−1BTP+QP = A^T P + PA - PBR^{-1}B^T P + QP=ATP+PA−PBR−1BTP+Q

formuliert, wobei PPP die Lösung der Gleichung ist, AAA und BBB die Systemmatrizen, QQQ die Kostenmatrix für den Zustand und RRR die Kostenmatrix für die Steuerung darstellen. Die Lösung PPP ist entscheidend für die Bestimmung der optimalen Rückführung der Steuerung, die typischerweise in der Form u=−R−1BTPxu = -R^{-1}B^T P xu=−R−1BTPx gegeben ist. Somit ermöglicht die Riccati-Gleichung die Berechnung der optimalen Steuerung in linearen quadratischen Regler-Problemen, was in vielen Anwendungen wie der Regelungstechnik und der Finanzwirtschaft von Bedeutung ist.

Prisoner Dilemma

Das Prisoner Dilemma ist ein klassisches Beispiel aus der Spieltheorie, das zeigt, wie zwei rational handelnde Individuen in einer Konfliktsituation zu suboptimalen Ergebnissen gelangen können. Stellen Sie sich vor, zwei Verbrecher werden festgenommen und für ein Verbrechen verhört. Jeder hat die Möglichkeit, die Aussage gegen den anderen zu machen oder zu schweigen. Wenn beide schweigen, erhalten sie eine mildere Strafe. Wenn einer aussagt und der andere schweigt, wird der Verräter freigelassen, während der Schweigende die volle Strafe erhält. Wenn beide aussagen, bekommen sie beide eine schwerere Strafe. Die dominante Strategie für beide ist, auszusagen, obwohl die beste gemeinsame Entscheidung darin bestünde, zu schweigen. Dieses Dilemma verdeutlicht, wie individuelle Rationalität zu einem kollektiven Nachteil führen kann und hat weitreichende Implikationen in Bereichen wie Wirtschaft, Politik und Sozialwissenschaften.