StudierendeLehrende

Navier-Stokes Turbulence Modeling

Das Navier-Stokes-Gleichungssystem beschreibt die Bewegungen von Fluiden und ist grundlegend für das Verständnis von Turbulenz. Turbulenz ist ein komplexes Phänomen, das durch chaotische Strömungen und Strömungsinstabilitäten gekennzeichnet ist. Bei der Modellierung von Turbulenz mit den Navier-Stokes-Gleichungen stehen Wissenschaftler vor der Herausforderung, die Vielzahl von Skalen und dynamischen Prozessen zu erfassen. Es gibt verschiedene Ansätze zur Turbulenzmodellierung, darunter:

  • Direkte Numerische Simulation (DNS): Diese Methode löst die Navier-Stokes-Gleichungen direkt und erfordert enorme Rechenressourcen.
  • Großes Eddy Simulation (LES): Hierbei werden die großen Strömungsstrukturen direkt simuliert, während die kleineren Turbulenzen modelliert werden.
  • Reynolds-zeitliche Mittelung: Bei diesem Ansatz werden die Gleichungen auf Mittelwerte angewendet, um die Effekte der Turbulenz statistisch zu erfassen.

Die Wahl des Modells hängt oft von der spezifischen Anwendung und den verfügbaren Rechenressourcen ab. Turbulenzmodellierung ist entscheidend in vielen Ingenieursdisziplinen, wie z.B. der Luftfahrt, dem Maschinenbau und der Umwelttechnik.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Referenzpunkte der Prospect-Theorie

Die Prospect Theory wurde von Daniel Kahneman und Amos Tversky entwickelt und beschreibt, wie Menschen Entscheidungen unter Risiko und Unsicherheit treffen. Ein zentrales Konzept dieser Theorie sind die Referenzpunkte, die als Ausgangsbasis für die Bewertung von Gewinnen und Verlusten dienen. Menschen neigen dazu, ihren Nutzen nicht auf absolute Ergebnisse zu beziehen, sondern auf die Abweichung von einem bestimmten Referenzpunkt, der oft der Status quo ist.

So empfinden Individuen Gewinne als weniger wertvoll, wenn sie über diesem Referenzpunkt liegen, während Verluste unter diesem Punkt als schmerzhafter empfunden werden. Dies führt zu einem Verhalten, das als Verlustaversion bezeichnet wird, was bedeutet, dass Verluste etwa doppelt so stark gewichtet werden wie gleich große Gewinne. Mathematisch lässt sich die Nutzenfunktion der Prospect Theory oft durch eine S-förmige Kurve darstellen, die sowohl die Asymmetrie zwischen Gewinnen und Verlusten als auch die abnehmende Sensitivität für extreme Werte verdeutlicht.

Gluon-Farbladung

Die Gluon Color Charge ist ein grundlegendes Konzept in der Quantenchromodynamik (QCD), der Theorie, die die Wechselwirkungen zwischen Quarks und Gluonen beschreibt. Gluonen sind die Austauschteilchen der starken Wechselwirkung und tragen selbst eine Farbe, die in der QCD als eine Art von Ladung bezeichnet wird. Anders als die elektrische Ladung in der Elektrodynamik gibt es in der QCD drei verschiedene Farben: Rot, Grün und Blau. Diese Farben können sich in einer Weise kombinieren, die als Farbneutralität bekannt ist; das bedeutet, dass zusammengesetzte Teilchen wie Hadronen (z.B. Protonen und Neutronen) keine Farbladung tragen sollten.

Die Wechselwirkungen zwischen Quarks und Gluonen sind durch die Austauschprozesse dieser Farbladungen charakterisiert, wobei Gluonen Farbladungen von Quarks verändern können. Mathematisch werden die Farbladungen durch die Gruppe SU(3) beschrieben, die die Symmetrien der starken Wechselwirkung beschreibt. Diese Farbwechselwirkungen sind verantwortlich für die Bindung der Quarks zu Hadronen und sind entscheidend für das Verständnis der Struktur der Materie auf subatomarer Ebene.

Finite Element Meshing Techniken

Die Finite-Elemente-Methode (FEM) ist eine leistungsstarke numerische Technik zur Analyse komplexer physikalischer Systeme. Bei dieser Methode ist das Erstellen eines geeigneten Netzes (Meshing) entscheidend, da die Qualität des Netzes direkten Einfluss auf die Genauigkeit und Effizienz der Berechnungen hat. Es gibt verschiedene Techniken für das Meshing, darunter:

  • Regelmäßige Netze: Diese verwenden gleichmäßige Elemente, die einfach zu handhaben sind, aber möglicherweise nicht die Geometrie komplexer Modelle genau erfassen.
  • Adaptive Meshing: Diese Technik passt die Dichte des Netzes basierend auf den Ergebnissen der Simulation an, um in Bereichen mit hohen Gradienten, wie Spannungsspitzen, mehr Details zu erfassen.
  • Unstrukturierte Netze: Diese bestehen aus variabel geformten Elementen und sind flexibler in der Modellierung komplizierter Geometrien, bieten jedoch Herausforderungen in Bezug auf die Berechnungseffizienz.

Ein effektives Meshing ist also entscheidend, um eine hohe Genauigkeit in den Simulationsergebnissen zu gewährleisten und gleichzeitig die Rechenressourcen optimal zu nutzen.

Cournot-Oligopol

Das Cournot-Oligopol ist ein Marktmodell, das beschreibt, wie Unternehmen in einem Oligopol ihre Produktionsmengen gleichzeitig und unabhängig voneinander festlegen, um ihren Gewinn zu maximieren. In diesem Modell gehen die Unternehmen davon aus, dass die Produktionsmengen der anderen Firmen konstant bleiben, während sie ihre eigene Menge wählen. Die Nachfrage auf dem Markt wird durch eine inverse Nachfragefunktion dargestellt, die typischerweise in der Form P(Q)=a−bQP(Q) = a - bQP(Q)=a−bQ gegeben ist, wobei PPP der Preis, QQQ die Gesamtmenge und aaa sowie bbb Parameter sind.

Die Unternehmen müssen ihre Entscheidung auf der Grundlage der erwarteten Reaktionen der Wettbewerber treffen, was zu einem Gleichgewicht führt, das als Cournot-Gleichgewicht bezeichnet wird. In diesem Gleichgewicht hat jedes Unternehmen einen Anreiz, seine Produktion zu ändern, solange die anderen Unternehmen ihre Mengen beibehalten, was zu stabilen Marktanteilen und Preisen führt. Ein zentrales Merkmal des Cournot-Oligopols ist, dass die Unternehmen in der Regel versuchen, ihre Gewinne durch strategische Interaktion zu maximieren, was zu einer kollusiven oder nicht-kollusiven Marktdynamik führen kann.

Schottky-Diode

Die Schottky Diode ist eine spezielle Art von Halbleiterdiode, die durch die Verbindung eines Halbleitermaterials, meist Silizium, mit einem Metall, wie Gold oder Platin, entsteht. Diese Diode ist bekannt für ihre schnelle Schaltgeschwindigkeit und niedrigen Vorwärtsspannungsabfall, der typischerweise zwischen 0,15 V und 0,45 V liegt, im Vergleich zu herkömmlichen Siliziumdioden, die einen Vorwärtsspannungsabfall von etwa 0,7 V aufweisen.

Ein wesentliches Merkmal der Schottky Diode ist die Schottky-Barriere, die sich an der Grenzfläche zwischen dem Metall und dem Halbleiter bildet. Diese Barriere ermöglicht eine effiziente Steuerung des Stromflusses in Durchlassrichtung und verhindert den Rückfluss in Sperrrichtung. Aufgrund ihrer Eigenschaften finden Schottky Dioden häufig Anwendung in Gleichrichterschaltungen, Schaltnetzteilen und Hochfrequenzanwendungen, wo hohe Geschwindigkeiten und geringe Verlustleistungen gefragt sind.

Gram-Schmidt-Orthogonalisierung

Die Gram-Schmidt-Orthogonalisierung ist ein Verfahren, um aus einer gegebenen Menge von linear unabhängigen Vektoren eine orthogonale (oder orthonormale) Basis zu erzeugen. Ähnlich wie bei der Basisumformung in einem Vektorraum wird jeder Vektor sukzessive modifiziert, um sicherzustellen, dass er orthogonal zu den bereits erzeugten Vektoren ist. Der Prozess umfasst folgende Schritte:

  1. Beginne mit einem Satz von linear unabhängigen Vektoren {v1,v2,…,vn}\{v_1, v_2, \ldots, v_n\}{v1​,v2​,…,vn​}.
  2. Setze den ersten orthogonalen Vektor u1=v1u_1 = v_1u1​=v1​.
  3. Für jeden weiteren Vektor vkv_kvk​ (mit k>1k > 1k>1) berechne:
uk=vk−∑j=1k−1⟨vk,uj⟩⟨uj,uj⟩uj u_k = v_k - \sum_{j=1}^{k-1} \frac{\langle v_k, u_j \rangle}{\langle u_j, u_j \rangle} u_juk​=vk​−j=1∑k−1​⟨uj​,uj​⟩⟨vk​,uj​⟩​uj​

Hierbei ist ⟨⋅,⋅⟩\langle \cdot, \cdot \rangle⟨⋅,⋅⟩ das innere Produkt, das den Vektoren ihre orthogonale Beziehung verleiht.
4. Optional kann man die Vektoren normalisieren, um eine orthonormale Basis zu erhalten, indem man jeden $