StudierendeLehrende

Machine Learning Regression

Machine Learning Regression ist ein Teilbereich des maschinellen Lernens, der sich mit der Vorhersage kontinuierlicher Werte beschäftigt. Dabei wird ein Modell trainiert, um die Beziehung zwischen einer oder mehreren unabhängigen Variablen (Features) und einer abhängigen Variable (Zielgröße) zu erfassen. Die häufigsten Algorithmen für die Regression sind lineare Regression, polynomiale Regression und Entscheidungsbaum-Regression.

Das Ziel ist es, eine Funktion f(x)f(x)f(x) zu finden, die die Eingabedaten xxx so abbildet, dass die Vorhersage yyy so genau wie möglich ist. Dies geschieht in der Regel durch Minimierung eines Fehlers, häufig gemessen durch die mittlere quadratische Abweichung (MSE):

MSE=1n∑i=1n(yi−f(xi))2\text{MSE} = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2MSE=n1​i=1∑n​(yi​−f(xi​))2

Hierbei ist nnn die Anzahl der Datenpunkte, yiy_iyi​ der tatsächliche Wert und f(xi)f(x_i)f(xi​) der vorhergesagte Wert. Durch optimierte Algorithmen wie Gradient Descent wird das Modell kontinuierlich verbessert, um genauere Vorhersagen zu ermöglichen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Edgeworth-Box

Die Edgeworth Box ist ein grafisches Werkzeug in der Mikroökonomie, das verwendet wird, um die Allokation von Ressourcen zwischen zwei Individuen oder Gruppen darzustellen. Sie zeigt die möglichen Kombinationen von zwei Gütern, die von diesen Individuen konsumiert werden können. Die Box hat eine quadratische Form, wobei jede Achse die Menge eines Gutes darstellt, das von einem der beiden Akteure konsumiert wird.

Innerhalb der Box können die Indifferenzkurven beider Individuen eingezeichnet werden, die die verschiedenen Konsumkombinationen zeigen, bei denen jeder Akteur den gleichen Nutzen erzielt. Der Punkt, an dem sich die Indifferenzkurven schneiden, stellt einen Pareto-effizienten Zustand dar, bei dem keine Umverteilung der Ressourcen möglich ist, ohne dass einer der Akteure schlechter gestellt wird. In der Edgeworth Box können auch die Konzepte der Handelsgewinne und der Kooperation visualisiert werden, indem gezeigt wird, wie die Individuen durch Tausch ihre Wohlfahrt verbessern können.

Cournot-Modell

Das Cournot-Modell ist ein grundlegendes Konzept der Oligopoltheorie, das beschreibt, wie Unternehmen in einem Markt mit wenigen Anbietern ihre Produktionsmengen wählen, um ihren Gewinn zu maximieren. In diesem Modell gehen die Unternehmen davon aus, dass die Produktionsmengen ihrer Konkurrenten konstant bleiben, während sie ihre eigene Menge anpassen. Die Unternehmen wählen ihre Produktionsmenge qiq_iqi​, um den Gesamtmarktpreis P(Q)P(Q)P(Q) zu beeinflussen, wobei QQQ die Gesamtmenge aller Anbieter ist und sich aus der Summe der einzelnen Mengen ergibt:

Q=q1+q2+...+qnQ = q_1 + q_2 + ... + q_nQ=q1​+q2​+...+qn​

Die Unternehmen maximieren ihren Gewinn πi\pi_iπi​ durch die Gleichung:

πi=P(Q)⋅qi−C(qi)\pi_i = P(Q) \cdot q_i - C(q_i)πi​=P(Q)⋅qi​−C(qi​)

wobei C(qi)C(q_i)C(qi​) die Kostenfunktion ist. Das Gleichgewicht im Cournot-Modell wird erreicht, wenn kein Unternehmen einen Anreiz hat, seine Produktionsmenge zu ändern, was bedeutet, dass die Reaktionsfunktionen der Unternehmen sich schneiden. Diese Annahme führt zu einem stabilen Marktgleichgewicht, das sowohl für die Unternehmen als auch für die Konsumenten von Bedeutung ist.

CMOS-Inverter-Verzögerung

Der CMOS Inverter Delay bezieht sich auf die Zeit, die benötigt wird, um den Ausgang eines CMOS-Inverters von einem stabilen Zustand in einen anderen zu ändern, nachdem ein Eingangssignal an den Inverter angelegt wurde. Diese Verzögerung ist entscheidend für die Leistung digitaler Schaltungen, da sie die maximale Schaltgeschwindigkeit und damit die Frequenz bestimmt, mit der die Schaltung betrieben werden kann. Die Verzögerung kann durch verschiedene Faktoren beeinflusst werden, einschließlich der Lastkapazität, der Größe der Transistoren und der Betriebsspannung.

Die Verzögerung tdt_dtd​ eines CMOS-Inverters kann näherungsweise mit den folgenden Gleichungen beschrieben werden:

td=CL⋅VDDIont_d = \frac{C_L \cdot V_{DD}}{I_{on}}td​=Ion​CL​⋅VDD​​

Hierbei ist CLC_LCL​ die Lastkapazität, VDDV_{DD}VDD​ die Betriebsspannung und IonI_{on}Ion​ der Einschaltstrom des Transistors. Ein wichtiges Konzept, das bei der Berechnung des Verzugs berücksichtigt werden muss, ist das RC-Verhalten, das sich aus dem Produkt der Widerstände und Kapazitäten im Schaltkreis ergibt. Je geringer der Delay, desto schneller kann die Schaltung arbeiten, was besonders in Hochgeschwindigkeitsanwendungen von Bedeutung ist.

Überlappende Generationen Modell

Das Overlapping Generations Model (OLG-Modell) ist ein fundamentales Konzept in der modernen Wirtschaftstheorie, das die Interaktionen zwischen verschiedenen Generationen in einer Volkswirtschaft untersucht. Es geht davon aus, dass Individuen in verschiedenen Lebensphasen leben und wirtschaftliche Entscheidungen treffen, die sowohl ihre eigene Generation als auch die nachfolgende Generation beeinflussen. In diesem Modell arbeiten ältere und jüngere Generationen gleichzeitig, was bedeutet, dass es Überschneidungen in den Zeiträumen gibt, in denen die Generationen aktiv sind.

Ein zentrales Merkmal des OLG-Modells ist, dass es die Dynamik von Ersparnissen und Investitionen über Zeit betrachtet. Wirtschaftliche Entscheidungen, wie das Sparen für den Ruhestand oder Investitionen in Bildung, haben langfristige Auswirkungen auf die wirtschaftliche Entwicklung. Mathematisch wird das Modell häufig durch Gleichungen dargestellt, die die optimale Konsum- und Sparstrategie der Individuen beschreiben, typischerweise in Form von Nutzenmaximierung unter Berücksichtigung von Budgetrestriktionen:

U(ct)+βU(ct+1)U(c_t) + \beta U(c_{t+1})U(ct​)+βU(ct+1​)

Hierbei steht U(ct)U(c_t)U(ct​) für den Nutzen des Konsums zum Zeitpunkt ttt, ct+1c_{t+1}ct+1​ für den Konsum der nächsten Generation und β\betaβ für den Diskontfaktor, der die

Bretton Woods

Das Bretton-Woods-System war ein internationales Währungs- und Finanzsystem, das 1944 während einer Konferenz in Bretton Woods, New Hampshire, ins Leben gerufen wurde. Ziel war es, eine stabile wirtschaftliche Ordnung nach dem Zweiten Weltkrieg zu schaffen und die Grundlage für den internationalen Handel zu legen. Das System führte zur Schaffung des Internationalen Währungsfonds (IWF) und der Weltbank, um die wirtschaftliche Zusammenarbeit und Stabilität zu fördern. Eine zentrale Idee des Bretton-Woods-Systems war die Bindung der Währungen an den US-Dollar, der seinerseits an Gold gebunden war, was zu einem stabilen Wechselkursregime führte. Dieses System blieb bis in die frühen 1970er Jahre bestehen, als es aufgrund von wirtschaftlichen Herausforderungen und der Unfähigkeit, die Dollar-Gold-Bindung aufrechtzuerhalten, zusammenbrach.

Grenzneigung zum Konsum

Die Marginal Propensity To Consume (MPC) bezeichnet den Anteil des zusätzlichen Einkommens, den Haushalte für Konsum ausgeben, anstatt zu sparen. Sie ist ein zentrales Konzept in der Makroökonomie, da sie das Verhalten von Konsumenten in Bezug auf Einkommensänderungen beschreibt. Mathematisch wird die MPC definiert als:

MPC=ΔCΔYMPC = \frac{\Delta C}{\Delta Y}MPC=ΔYΔC​

wobei ΔC\Delta CΔC die Veränderung des Konsums und ΔY\Delta YΔY die Veränderung des Einkommens darstellt. Ein hoher MPC-Wert bedeutet, dass Haushalte einen großen Teil ihres zusätzlichen Einkommens ausgeben, während ein niedriger Wert darauf hindeutet, dass sie eher sparen. Die MPC hat wichtige Implikationen für die Wirtschaftspolitik, da sie die Effektivität von fiskalischen Stimulierungsmaßnahmen beeinflusst.