Bell’S Inequality Violation

Die Bell'sche Ungleichung ist ein zentrales Konzept in der Quantenmechanik, das die Vorhersagen der Quantenmechanik mit denen der klassischen Physik vergleicht. Sie besagt, dass bestimmte statistische Korrelationen zwischen Messungen an zwei weit voneinander entfernten Teilchen, die in einem gemeinsamen Quantenzustand sind, nicht die Grenzen der klassischen Physik überschreiten sollten. Wenn jedoch Experimente durchgeführt werden, die die Annahmen der lokalen Realität und der verborgenen Variablen in der klassischen Physik testen, zeigen die Ergebnisse oft eine Verletzung dieser Ungleichung.

Diese Verletzung deutet darauf hin, dass die Teilchen auf eine Weise miteinander verbunden sind, die nicht durch klassische Konzepte wie lokale verborgene Variablen erklärbar ist. Stattdessen unterstützen die Ergebnisse die Quantenverschränkung, ein Phänomen, bei dem das Verhalten eines Teilchens instantan das eines anderen beeinflusst, unabhängig von der Entfernung zwischen ihnen. Die Verletzung der Bell'schen Ungleichung hat weitreichende Implikationen für unser Verständnis der Realität und stellt die klassischen Ansichten über Kausalität und Information in Frage.

Weitere verwandte Begriffe

Navier-Stokes

Die Navier-Stokes-Gleichungen sind ein Satz von partiellen Differentialgleichungen, die die Bewegung von fluiden Materialien, wie Flüssigkeiten und Gasen, beschreiben. Sie basieren auf den Grundprinzipien der Erhaltung von Masse, Energie und Impuls. Die Gleichungen berücksichtigen sowohl die Viskosität des Fluids als auch externe Kräfte, wie Druck und Schwerkraft. Mathematisch ausgedrückt, können die Gleichungen in der Form:

ρ(ut+uu)=p+μ2u+f\rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}

geschrieben werden, wobei ρ\rho die Dichte des Fluids, u\mathbf{u} die Geschwindigkeit, pp den Druck, μ\mu die Viskosität und f\mathbf{f} externe Kräfte darstellt. Diese Gleichungen sind von zentraler Bedeutung in der Strömungsmechanik und finden Anwendung in verschiedenen Bereichen wie Meteorologie, Ozeanographie und Ingenieurwesen. Die Lösung der Navier-Stokes-Gleichungen ist jedoch oft sehr komplex und in vielen Fällen noch nicht vollständig verstanden, was sie zu einem

Schuldenüberhang

Debt Overhang beschreibt eine Situation, in der ein Unternehmen oder ein Land so hoch verschuldet ist, dass die bestehenden Schulden eine Hemmschwelle für zukünftige Investitionen darstellen. Dies geschieht oft, weil die Gläubiger befürchten, dass künftige Einnahmen zur Bedienung der Schulden verwendet werden müssen, anstatt in das Wachstum des Unternehmens oder der Volkswirtschaft zu fließen. Infolgedessen könnten potenzielle Investoren zögern, ihr Kapital zu investieren, da sie befürchten, dass ihre Renditen durch die bereits bestehenden Schulden geschmälert werden. Ein typisches Beispiel ist die Formel für den Nettogegenwartswert (NPV), die zeigt, dass, wenn die zukünftigen Cashflows zur Schuldentilgung verwendet werden müssen, der NPV negativ wird und somit Investitionen unattraktiv erscheinen. Um dieses Problem zu überwinden, können Unternehmen oder Staaten Restrukturierungen oder Schuldennachlässe in Betracht ziehen, um die Investitionsbereitschaft zu erhöhen und wirtschaftliches Wachstum zu fördern.

Preiselastizität der Nachfrage

Die Elastizität der Nachfrage ist ein Maß dafür, wie sensibel die nachgefragte Menge eines Gutes auf Änderungen des Preises reagiert. Sie wird berechnet als das Verhältnis der prozentualen Änderung der nachgefragten Menge zur prozentualen Änderung des Preises. Mathematisch wird dies durch die Formel ausgedrückt:

Ed=% A¨nderung der nachgefragten Menge% A¨nderung des PreisesE_d = \frac{\%\ \text{Änderung der nachgefragten Menge}}{\%\ \text{Änderung des Preises}}

Ein Wert von Ed>1E_d > 1 zeigt an, dass die Nachfrage elastisch ist, was bedeutet, dass eine Preisänderung zu einer überproportionalen Änderung der nachgefragten Menge führt. Umgekehrt bedeutet Ed<1E_d < 1, dass die Nachfrage unelastisch ist; eine Preisänderung hat nur geringe Auswirkungen auf die nachgefragte Menge. Faktoren wie Verfügbarkeit von Substitute, Notwendigkeit des Gutes und den Anteil des Einkommens, das für das Gut ausgegeben wird, beeinflussen die Elastizität der Nachfrage erheblich.

Graphen-Bandlücken-Engineering

Graphene ist ein zweidimensionales Material, das aus einer einzelnen Schicht von Kohlenstoffatomen besteht und bemerkenswerte Eigenschaften wie hohe elektrische Leitfähigkeit und mechanische Festigkeit aufweist. Eines der Hauptprobleme bei der Verwendung von Graphen in elektronischen Anwendungen ist, dass es ein nullbandgap Material ist, was bedeutet, dass es keinen Bandabstand zwischen dem Valenz- und dem Leitungsband gibt. Bandgap Engineering bezieht sich auf Techniken, die darauf abzielen, dieses Bandgap zu modifizieren, um die elektronischen Eigenschaften von Graphen zu verbessern.

Zu den Methoden des Bandgap Engineering gehören:

  • Chemische Modifikation: Durch das Einbringen von funktionellen Gruppen oder chemischen Elementen in die Graphenstruktur kann der Bandabstand beeinflusst werden.
  • Strain Engineering: Die Anwendung mechanischer Spannungen auf Graphen verändert seine Struktur und kann somit auch das Bandgap anpassen.
  • Nanostrukturierung: Das Erstellen von Graphen in Form von Nanoröhren oder anderen nanoskaligen Strukturen kann ebenfalls die elektronische Bandstruktur verändern.

Diese Techniken bieten die Möglichkeit, Graphen für verschiedene Anwendungen in der Elektronik und Optoelektronik zu optimieren, wie zum Beispiel in Transistoren, Solarzellen oder Sensoren.

Tolman-Oppenheimer-Volkoff-Gleichung

Die Tolman-Oppenheimer-Volkoff-Gleichung (TOV-Gleichung) beschreibt das Gleichgewicht von massiven, kompakten astrophysikalischen Objekten wie Neutronensternen unter dem Einfluss ihrer eigenen Schwerkraft. Sie basiert auf der allgemeinen Relativitätstheorie und berücksichtigt sowohl die Dichte als auch den Druck innerhalb des Sterns. Die Gleichung lautet:

dPdr=Gm(r)ρ(r)r2(1+P(r)ρ(r)c2)(1+4πr3P(r)m(r)c2)(12Gm(r)c2r)1\frac{dP}{dr} = -\frac{G m(r) \rho(r)}{r^2} \left( 1 + \frac{P(r)}{\rho(r)c^2} \right) \left( 1 + \frac{4\pi r^3 P(r)}{m(r)c^2} \right) \left( 1 - \frac{2G m(r)}{c^2 r} \right)^{-1}

Hierbei ist PP der Druck, ρ\rho die Dichte, m(r)m(r) die Masse innerhalb eines Radius rr, GG die Gravitationskonstante und cc die Lichtgeschwindigkeit. Die TOV-Gleichung ermöglicht es, die Struktur und Stabilität von Neutronensternen zu analysieren, indem sie die Wechselwirkungen zwischen Gravitation und innerem Druck

Regelungssysteme

Ein Regelsystem ist ein mathematisches Modell oder eine technische Anordnung, die dazu dient, ein bestimmtes Verhalten eines Systems zu steuern und zu regulieren. Es bestehen zwei Haupttypen: offene und geschlossene Regelkreise. In einem offenen Regelkreis wird die Ausgabe nicht mit der Eingabe verglichen, während in einem geschlossenen Regelkreis die Ausgabe kontinuierlich überwacht und angepasst wird, um die gewünschten Ziele zu erreichen.

Regelsysteme finden Anwendung in vielen Bereichen, wie beispielsweise in der Automatisierungstechnik, der Robotik und der Luftfahrt. Sie nutzen mathematische Modelle, häufig in Form von Differentialgleichungen, um das Verhalten des Systems vorherzusagen und zu steuern. Ein gängiges Ziel ist die Minimierung des Fehlers e(t)e(t), definiert als die Differenz zwischen dem gewünschten Sollwert r(t)r(t) und dem tatsächlichen Istwert y(t)y(t):

e(t)=r(t)y(t)e(t) = r(t) - y(t)

Durch geeignete Regelstrategien, wie PID-Regelung (Proportional-Integral-Derivat), können Systeme optimiert und stabilisiert werden.

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.