StudierendeLehrende

Mems Gyroscope Working Principle

Ein MEMS-Gyroskop (Micro-Electro-Mechanical Systems) funktioniert auf der Grundlage der Prinzipien der Rotation und Bewegung. Es nutzt die Corioliskraft, um Drehbewegungen zu messen. Im Inneren des Gyroskops befinden sich winzige, bewegliche Komponenten, die durch elektrische Signale angeregt werden. Wenn sich das Gyroskop dreht, bewirken die Corioliskräfte, dass sich diese Komponenten in einer bestimmten Richtung bewegen, was als Veränderung ihrer Position oder Geschwindigkeit gemessen wird.

Diese Veränderungen werden in elektrische Signale umgewandelt, die dann analysiert werden, um die Drehgeschwindigkeit und die Richtung zu bestimmen. Der grundlegende mathematische Zusammenhang, der dabei verwendet wird, ist die Beziehung zwischen dem Drehwinkel θ\thetaθ, der Zeit ttt und der Winkelgeschwindigkeit ω\omegaω, gegeben durch die Gleichung:

ω=dθdt\omega = \frac{d\theta}{dt}ω=dtdθ​

Durch die präzise Erfassung dieser Daten können MEMS-Gyroskope in verschiedenen Anwendungen, wie z.B. in Smartphones, Drohnen oder Automobilen, eingesetzt werden, um die Orientierung und Bewegung zu stabilisieren und zu steuern.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Dynamische stochastische allgemeine Gleichgewichtsmodelle

Dynamic Stochastic General Equilibrium Models (DSGE-Modelle) sind eine Klasse von ökonometrischen Modellen, die verwendet werden, um das Verhalten von Wirtschaftssystemen über die Zeit zu analysieren. Diese Modelle kombinieren dynamische Elemente, die die zeitliche Entwicklung von Variablen berücksichtigen, mit stochastischen Elementen, die Unsicherheiten und zufällige Schocks einbeziehen. DSGE-Modelle basieren auf mikroökonomischen Fundamenten und beschreiben, wie Haushalte und Unternehmen Entscheidungen unter Berücksichtigung von zukünftigen Erwartungen treffen.

Ein typisches DSGE-Modell enthält Gleichungen, die das Verhalten von Konsum, Investitionen, Produktion und Preisen darstellen. Die Verwendung von Rationalen Erwartungen ist ein zentrales Merkmal dieser Modelle, was bedeutet, dass die Akteure in der Wirtschaft ihre Erwartungen über zukünftige Ereignisse basierend auf allen verfügbaren Informationen rational bilden. DSGE-Modelle werden häufig zur Analyse von geldpolitischen Maßnahmen, fiskalischen Politiken und zur Vorhersage von wirtschaftlichen Entwicklungen eingesetzt.

Stagflationstheorie

Die Stagflation-Theorie beschreibt eine wirtschaftliche Situation, in der hohe Inflation, stagnierendes Wirtschaftswachstum und hohe Arbeitslosigkeit gleichzeitig auftreten. Dies ist eine problematische Kombination, da traditionelle wirtschaftliche Modelle oft davon ausgehen, dass Inflation und Arbeitslosigkeit invers miteinander korrelieren; wenn die Inflation steigt, sinkt die Arbeitslosigkeit und umgekehrt. In einer Stagflation-Phase hingegen können steigende Preise und sinkende Produktionszahlen zu einem Teufelskreis führen, der sowohl Verbraucher als auch Unternehmen belastet. Die Ursachen für Stagflation können vielfältig sein und reichen von externen Schocks, wie plötzlichen Rohstoffpreiserhöhungen (z.B. Ölkrisen), bis hin zu ungünstigen wirtschaftlichen Rahmenbedingungen. Politische Maßnahmen zur Bekämpfung der Inflation könnten die Arbeitslosigkeit weiter erhöhen, was die Herausforderung für Regierungen und Zentralbanken verstärkt.

Chern-Zahl

Die Chern-Zahl ist ein topologisches Invarianzmaß, das in der Mathematik und Physik, insbesondere in der Festkörperphysik und der Quantenfeldtheorie, eine wichtige Rolle spielt. Sie quantifiziert die Topologie von Energiebandstrukturen in Materialien und spielt eine entscheidende Rolle bei der Klassifizierung von topologischen Phasen. Mathematisch wird die Chern-Zahl als Integral über die erste Chern-Klasse c1c_1c1​ einer gegebenen, komplexen Vektorfeldstruktur definiert:

C=12π∫BZF(k) dkC = \frac{1}{2\pi} \int_{BZ} F(k) \, dkC=2π1​∫BZ​F(k)dk

Hierbei ist F(k)F(k)F(k) die Berry-Krümmung, die aus dem Berry-Potential abgeleitet wird, und BZBZBZ steht für die Brillouin-Zone. Ein bemerkenswerter Aspekt der Chern-Zahl ist, dass sie nur ganze Zahlen annehmen kann, was bedeutet, dass topologisch unterschiedliche Zustände nicht kontinuierlich ineinander überführt werden können, ohne dass Phasenumstellungen auftreten. Dies hat tiefgreifende Konsequenzen für das Verständnis von Phänomenen wie dem quantisierten Hall-Effekt und anderen topologischen Phasen in Festkörpern.

Nyquist-Diagramm

Ein Nyquist Plot ist ein grafisches Werkzeug, das in der Regelungstechnik und Signalverarbeitung verwendet wird, um die Stabilität und das Frequenzverhalten von dynamischen Systemen zu analysieren. Der Plot stellt die komplexe Frequenzantwort eines Systems dar, indem die Realteile gegen die Imaginärteile der Übertragungsfunktion H(jω)H(j\omega)H(jω) aufgetragen werden, wobei ω\omegaω die Frequenz ist. Dies ermöglicht es, die Stabilität eines Systems zu beurteilen, indem man die Umrundungen des Punktes (−1,0)(-1, 0)(−1,0) im Diagramm betrachtet.

Wichtige Aspekte des Nyquist Plots sind:

  • Stabilität: Ein System ist stabil, wenn der Nyquist Plot nicht den Punkt (−1,0)(-1, 0)(−1,0) umschließt.
  • Kreisbewegung: Der Verlauf des Plots zeigt, wie das System auf verschiedene Frequenzen reagiert, was Rückschlüsse auf Resonanz und Dämpfung zulässt.

Insgesamt ist der Nyquist Plot ein wertvolles Werkzeug zur Analyse und zum Entwurf von Regelungssystemen.

Nyquist-Stabilitätskriterium

Das Nyquist-Stabilitätskriterium ist eine Methode zur Analyse der Stabilität von Regelungssystemen im Frequenzbereich. Es basiert auf der Untersuchung der Übertragungsfunktion G(jω)G(j\omega)G(jω) des Systems, wobei jjj die imaginäre Einheit und ω\omegaω die Frequenz ist. Der Hauptgedanke ist, den Nyquist-Plot, der die Werte von G(jω)G(j\omega)G(jω) für alle Frequenzen ω\omegaω darstellt, zu zeichnen und zu analysieren.

Ein System ist stabil, wenn die Anzahl der Umfassungen des Punktes −1+j0-1 + j0−1+j0 im Nyquist-Plot gleich der Anzahl der rechten Halbwelle der Polstellen von G(s)G(s)G(s) ist. Die Bedingung kann mathematisch durch die Anzahl der encirclements (Umkreisungen) beschrieben werden, die durch die Formel:

N=P−ZN = P - ZN=P−Z

definiert ist, wobei NNN die Anzahl der Umkreisungen um den Punkt −1-1−1, PPP die Anzahl der Pole im rechten Halbebereich und ZZZ die Anzahl der Nullstellen im rechten Halbebereich ist. Dieses Kriterium ist besonders nützlich, um die Stabilität in geschlossenen Regelungssystemen zu bestimmen, ohne die Systemdynamik direkt zu lösen.

Black-Scholes-Optionspreismodell-Derivation

Die Black-Scholes-Formel ist ein fundamentales Modell zur Bewertung von Optionen, das auf bestimmten Annahmen über die Preisbewegungen von Aktien basiert. Die Ableitung beginnt mit der Annahme, dass die Preise von Aktien einem geometrischen Brownians Prozess folgen, was bedeutet, dass die logarithmischen Renditen normalverteilt sind. Der Preis einer europäischen Call-Option kann dann durch die Risiko-Neutralität und die Martingal-Theorie abgeleitet werden.

Um die Option zu bewerten, wird zunächst ein Portfolio aus der Option und der zugrunde liegenden Aktie erstellt, das risikofrei ist. Mithilfe der Itô-Kalkül wird die zeitliche Veränderung des Portfoliowertes betrachtet, was zu einer partiellen differentialgleichung führt. Schließlich ergibt sich die Black-Scholes-Formel, die für eine europäische Call-Option wie folgt aussieht:

C(S,t)=SN(d1)−Ke−r(T−t)N(d2)C(S, t) = S N(d_1) - K e^{-r(T-t)} N(d_2)C(S,t)=SN(d1​)−Ke−r(T−t)N(d2​)

Hierbei sind N(d1)N(d_1)N(d1​) und N(d2)N(d_2)N(d2​) die Werte der kumulativen Normalverteilung, SSS der aktuelle Aktienkurs, KKK der Ausübungspreis, rrr der risikofreie Zinssatz und $ T-t