StudierendeLehrende

Minkowski Sum

Die Minkowski-Summe ist ein Konzept aus der Geometrie und der Mathematik, das sich mit der Addition von geometrischen Formen beschäftigt. Gegeben seien zwei Mengen AAA und BBB in einem Vektorraum, dann wird die Minkowski-Summe A⊕BA \oplus BA⊕B definiert als die Menge aller möglichen Summen von Punkten aus AAA und BBB. Mathematisch ausgedrückt lautet dies:

A⊕B={a+b∣a∈A,b∈B}A \oplus B = \{ a + b \mid a \in A, b \in B \}A⊕B={a+b∣a∈A,b∈B}

Die Minkowski-Summe hat zahlreiche Anwendungen, insbesondere in der Robotik, Computergrafik und in der Formanalyse. Sie ermöglicht es, komplexe Formen zu erstellen, indem man die Form eines Objekts mit der Struktur eines anderen kombiniert. Ein einfaches Beispiel wäre die Minkowski-Summe eines Punktes und eines Kreises, die einen größeren Kreis ergibt, dessen Radius der Größe des ursprünglichen Kreises plus der Distanz des Punktes ist.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Zornsches Lemma

Zorn's Lemma ist ein fundamentales Konzept in der Mengenlehre und eine wichtige Voraussetzung in der Mathematik, insbesondere in der Algebra und der Funktionalanalysis. Es besagt, dass in jeder nichtleeren Menge, die so beschaffen ist, dass jede aufsteigende Kette ein oberes Element hat, ein maximales Element existiert. Eine aufsteigende Kette ist eine total geordnete Teilmenge, in der jedes Element kleiner oder gleich dem nächsten ist. Formal ausgedrückt, wenn MMM eine nichtleere Menge ist und jede aufsteigende Kette in MMM ein oberes Element in MMM hat, dann gibt es ein Element m∈Mm \in Mm∈M, das maximal ist, d.h. es gibt kein n∈Mn \in Mn∈M mit n>mn > mn>m. Zorn's Lemma ist äquivalent zu anderen wichtigen Prinzipien in der Mathematik, wie dem Wohlordnungssatz und dem Auswahlaxiom.

Stark-Effekt

Der Stark-Effekt beschreibt die Veränderung der Energielevels von Atomen oder Molekülen, wenn sie in ein starkes elektrisches Feld gebracht werden. Diese Wechselwirkung führt zu einer Aufspaltung der Energieniveaus, was bedeutet, dass die Spektrallinien, die normalerweise scharf und klar sind, breiter und verschobener erscheinen. Der Effekt kann in zwei Hauptkategorien unterteilt werden: den linear und den quadratischen Stark-Effekt, abhängig von der Stärke des elektrischen Feldes und der spezifischen Energieänderung.

Mathematisch kann die Energieverschiebung durch das elektrische Feld EEE beschrieben werden als:

ΔE=−12αE2\Delta E = -\frac{1}{2} \alpha E^2ΔE=−21​αE2

wobei α\alphaα die Polarisierbarkeit des Atoms oder Moleküls ist. Der Stark-Effekt hat bedeutende Anwendungen in verschiedenen Bereichen, wie z.B. in der Spektroskopie und der Quantenmechanik, da er hilft, die Struktur von Atomen und Molekülen besser zu verstehen.

Lebesgue-Stieltjes-Integral

Das Lebesgue-Stieltjes Integral ist eine Verallgemeinerung des Lebesgue-Integrals, das es ermöglicht, Funktionen in Bezug auf eine nicht notwendigerweise stetige Funktion zu integrieren. Es wird definiert für eine Funktion f:[a,b]→Rf: [a, b] \to \mathbb{R}f:[a,b]→R und eine monotone Funktion g:[a,b]→Rg: [a, b] \to \mathbb{R}g:[a,b]→R. Das Integral wird durch die Notation

∫abf(x) dg(x)\int_a^b f(x) \, dg(x)∫ab​f(x)dg(x)

ausgedrückt. Hierbei handelt es sich um eine Form der Integration, die auch bei diskontinuierlichen oder nicht stetigen Funktionen anwendbar ist. Der Schlüssel zum Verständnis des Lebesgue-Stieltjes Integrals liegt in der Betrachtung der Veränderung von ggg und der Gewichtung der Werte von fff entsprechend dieser Veränderung. Diese Integrationsform findet Anwendungen in verschiedenen Bereichen, einschließlich der Wahrscheinlichkeitstheorie und der Finanzmathematik, da sie eine breite Klasse von Funktionen und Maßsystemen abdeckt.

Zbus-Matrix

Die Zbus-Matrix ist ein zentrales Konzept in der elektrischen Netzwerkanalyse, insbesondere in der Analyse von elektrischen Verteilungs- und Übertragungsnetzen. Sie stellt eine Impedanzmatrix dar, die die Beziehungen zwischen den Spannungen und Strömen in einem Netzwerk beschreibt. In der Zbus-Matrix wird jeder Knoten im Netzwerk durch eine Zeile und eine Spalte repräsentiert, und die Matrixelemente enthalten die Impedanzen zwischen den Knoten.

Mathematisch wird die Zbus-Matrix oft durch die Gleichung

V=Zbus⋅I\mathbf{V} = \mathbf{Z_{bus}} \cdot \mathbf{I}V=Zbus​⋅I

ausgedrückt, wobei V\mathbf{V}V die Spannungen, Zbus\mathbf{Z_{bus}}Zbus​ die Zbus-Matrix und I\mathbf{I}I die Ströme sind. Durch die Anwendung der Zbus-Matrix können Ingenieure die Auswirkungen von Änderungen im Netzwerk, wie z.B. das Hinzufügen oder Entfernen von Komponenten, effizient analysieren, ohne das gesamte Netzwerk neu zu berechnen. Dies macht die Zbus-Matrix zu einem unverzichtbaren Werkzeug in der Leistungssystemanalyse und -design.

Erneuerbare Energietechnik

Renewable Energy Engineering beschäftigt sich mit der Entwicklung, Implementierung und Optimierung von Technologien, die auf erneuerbaren Energiequellen basieren. Dazu gehören Solarenergie, Windenergie, Wasserkraft, Geothermie und Biomasse. Ingenieure in diesem Bereich analysieren die Effizienz von Energieumwandlungsprozessen und entwerfen Systeme, die eine nachhaltige Energieproduktion ermöglichen. Sie berücksichtigen auch wirtschaftliche, ökologische und soziale Faktoren, um Lösungen zu finden, die sowohl technisch als auch wirtschaftlich tragfähig sind. Der Fokus liegt darauf, die Abhängigkeit von fossilen Brennstoffen zu reduzieren und die Umweltauswirkungen von Energiegewinnung und -nutzung zu minimieren. In einer Zeit des Klimawandels ist die Rolle von Renewable Energy Engineering entscheidend für die Gestaltung einer nachhaltigen Zukunft.

Phasenfeldmodellierung Anwendungen

Das Phase-Field-Modell ist eine leistungsstarke Methode zur Beschreibung von Phasenübergängen und -dynamiken in verschiedenen Materialien und Systemen. Es wird häufig in der Materialwissenschaft, der Biophysik und der Chemie eingesetzt, um komplexe Prozesse wie die Kristallisation, Diffusion und Mikrostrukturentwicklung zu simulieren. Durch die Verwendung eines kontinuierlichen Feldes, das die Phasengrenzen beschreibt, erlaubt das Modell eine präzise Analyse von Phänomenen, die in der Natur oft abrupt und komplex sind.

Ein zentraler Vorteil des Phase-Field-Ansatzes ist seine Fähigkeit, multiskalare Systeme zu berücksichtigen, bei denen sowohl mikroskopische als auch makroskopische Effekte in Wechselwirkung stehen. Die mathematische Formulierung basiert häufig auf der minimierung von Energie, was durch die Gleichung

∂ϕ∂t=M∇2(δFδϕ)\frac{\partial \phi}{\partial t} = M \nabla^2 \left( \frac{\delta F}{\delta \phi} \right)∂t∂ϕ​=M∇2(δϕδF​)

beschrieben wird, wobei ϕ\phiϕ das Phasenfeld, MMM die Mobilität und FFF die freie Energie ist. Die Anwendungen sind vielfältig und reichen von der Entwicklung neuer Legierungen bis hin zur Analyse biologischer Prozesse, was das Phase-Field-Mod