Nanoelectromechanical Resonators (NEM-Resonatoren) sind mikroskopisch kleine Geräte, die mechanische und elektrische Eigenschaften kombinieren, um hochpräzise Messungen und Resonanzeffekte zu erzeugen. Diese Resonatoren bestehen typischerweise aus nanoskaligen Materialien und Strukturen, die auf Veränderungen in elektrischen Feldern oder mechanischen Kräften reagieren. Sie nutzen die Prinzipien der Resonanz, wobei sie bei bestimmten Frequenzen schwingen, was ihre Empfindlichkeit gegenüber externen Störungen erhöht.
Die Anwendungsmöglichkeiten sind vielfältig und reichen von Sensoren in der Biomedizin bis hin zu Mikroelektronik, wo sie zur Verbesserung der Signalverarbeitung und Datenspeicherung eingesetzt werden. Besonders hervorzuheben ist die Fähigkeit von NEM-Resonatoren, sehr kleine Massen oder Kräfte mit hoher Genauigkeit zu detektieren, was sie zu einem vielversprechenden Werkzeug in der Nanotechnologie macht. Ihre Innovationskraft liegt in der Kombination von hoher Empfindlichkeit und miniaturisierten Dimensionen, was sie zu einer Schlüsseltechnologie für die Zukunft der Elektronik und Sensorik macht.
Die Black-Scholes-Formel ist ein fundamentales Modell zur Bewertung von Optionen, das auf bestimmten Annahmen über die Preisbewegungen von Aktien basiert. Die Ableitung beginnt mit der Annahme, dass die Preise von Aktien einem geometrischen Brownians Prozess folgen, was bedeutet, dass die logarithmischen Renditen normalverteilt sind. Der Preis einer europäischen Call-Option kann dann durch die Risiko-Neutralität und die Martingal-Theorie abgeleitet werden.
Um die Option zu bewerten, wird zunächst ein Portfolio aus der Option und der zugrunde liegenden Aktie erstellt, das risikofrei ist. Mithilfe der Itô-Kalkül wird die zeitliche Veränderung des Portfoliowertes betrachtet, was zu einer partiellen differentialgleichung führt. Schließlich ergibt sich die Black-Scholes-Formel, die für eine europäische Call-Option wie folgt aussieht:
Hierbei sind und die Werte der kumulativen Normalverteilung, der aktuelle Aktienkurs, der Ausübungspreis, der risikofreie Zinssatz und $ T-t
Kruskal's Algorithmus ist ein Verfahren zur Bestimmung des minimalen Spannbaums (MST) eines gewichteten, zusammenhängenden Graphen. Der Algorithmus funktioniert, indem er die Kanten des Graphen nach ihrem Gewicht sortiert und dann die leichtesten Kanten auswählt, vorausgesetzt, sie führen nicht zu einem Zyklus. Der Prozess wird fortgesetzt, bis alle Knoten im Baum verbunden sind.
Die Schritte des Algorithmus sind wie folgt:
Kruskal's Algorithmus ist besonders nützlich in großen Graphen und wird häufig in Netzwerkdesign und ähnlichen Anwendungen eingesetzt.
Die Brain Functional Connectivity Analysis (BFCA) ist ein Verfahren zur Untersuchung der funktionalen Interaktionen zwischen verschiedenen Regionen des Gehirns. Sie basiert auf der Annahme, dass aktive Gehirnregionen in einem synchronisierten Muster arbeiten, was durch die Analyse von Bildgebungsdaten, wie z.B. fMRI oder EEG, erfasst werden kann. Diese Analyse ermöglicht es, Netzwerke innerhalb des Gehirns zu identifizieren, die an verschiedenen kognitiven Prozessen beteiligt sind.
Typische Methoden zur Durchführung von BFCA umfassen Korrelationsanalysen, bei denen die zeitlichen Aktivitätsmuster zweier oder mehrerer Regionen verglichen werden. Oft werden die Ergebnisse in Form von Netzwerkgraphen dargestellt, bei denen Knoten die Gehirnregionen und Kanten die funktionalen Verbindungen repräsentieren. Die BFCA hat Anwendungen in der Klinischen Neurowissenschaft, insbesondere bei der Untersuchung von neurologischen Störungen wie Schizophrenie oder Alzheimer, sowie in der Kognitionsforschung, um die zugrunde liegenden Mechanismen des Denkens und Verhaltens zu verstehen.
Die Tolman-Oppenheimer-Volkoff-Gleichung (TOV-Gleichung) beschreibt das Gleichgewicht von massiven, kompakten astrophysikalischen Objekten wie Neutronensternen unter dem Einfluss ihrer eigenen Schwerkraft. Sie basiert auf der allgemeinen Relativitätstheorie und berücksichtigt sowohl die Dichte als auch den Druck innerhalb des Sterns. Die Gleichung lautet:
Hierbei ist der Druck, die Dichte, die Masse innerhalb eines Radius , die Gravitationskonstante und die Lichtgeschwindigkeit. Die TOV-Gleichung ermöglicht es, die Struktur und Stabilität von Neutronensternen zu analysieren, indem sie die Wechselwirkungen zwischen Gravitation und innerem Druck
Der Lamb Shift ist eine kleine Energieverschiebung von Elektronenschalen in Wasserstoffatomen, die durch quantenmechanische Effekte verursacht wird. Diese Verschiebung resultiert aus der Wechselwirkung des Elektrons mit den virtuellen Photonen des elektromagnetischen Feldes, was zu einer Abweichung von den Vorhersagen der klassischen Quantenmechanik führt. Die Berechnung des Lamb Shift erfolgt typischerweise durch die Anwendung der Störungstheorie, wobei die Wechselwirkungen zwischen dem Elektron und dem quantisierten elektromagnetischen Feld berücksichtigt werden.
Die Energieverschiebung kann mathematisch als formuliert werden, wobei die tatsächliche Energie der zweiten Schale und die klassisch vorhergesagte Energie ist. Der Lamb Shift wurde experimentell nachgewiesen und bestätigt, dass die Quantenfeldtheorie (QFT) eine genauere Beschreibung der physikalischen Realität bietet als die alte Quantenmechanik. Dies hat bedeutende Implikationen für unser Verständnis der Wechselwirkungen in der Teilchenphysik und der Struktur von Atomen.
Die Hume-Rothery-Regeln sind eine Reihe von Kriterien, die zur Vorhersage und Erklärung der Mischbarkeit von Metallen in Legierungen verwendet werden. Diese Regeln basieren auf den Eigenschaften der Atome und ihrer Struktur und umfassen mehrere Schlüsselfaktoren:
Diese Regeln sind besonders hilfreich in der Metallurgie und Materialwissenschaft, um die Herstellung von Legierungen mit gewünschten Eigenschaften zu optimieren.