StudierendeLehrende

Nyquist Stability Criterion

Das Nyquist-Stabilitätskriterium ist eine Methode zur Analyse der Stabilität von Regelungssystemen im Frequenzbereich. Es basiert auf der Untersuchung der Übertragungsfunktion G(jω)G(j\omega)G(jω) des Systems, wobei jjj die imaginäre Einheit und ω\omegaω die Frequenz ist. Der Hauptgedanke ist, den Nyquist-Plot, der die Werte von G(jω)G(j\omega)G(jω) für alle Frequenzen ω\omegaω darstellt, zu zeichnen und zu analysieren.

Ein System ist stabil, wenn die Anzahl der Umfassungen des Punktes −1+j0-1 + j0−1+j0 im Nyquist-Plot gleich der Anzahl der rechten Halbwelle der Polstellen von G(s)G(s)G(s) ist. Die Bedingung kann mathematisch durch die Anzahl der encirclements (Umkreisungen) beschrieben werden, die durch die Formel:

N=P−ZN = P - ZN=P−Z

definiert ist, wobei NNN die Anzahl der Umkreisungen um den Punkt −1-1−1, PPP die Anzahl der Pole im rechten Halbebereich und ZZZ die Anzahl der Nullstellen im rechten Halbebereich ist. Dieses Kriterium ist besonders nützlich, um die Stabilität in geschlossenen Regelungssystemen zu bestimmen, ohne die Systemdynamik direkt zu lösen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Hahn-Banach-Trennungsatz

Das Hahn-Banach-Trennungs-Theorem ist ein fundamentales Resultat der funktionalen Analysis und der geometrischen Mathematik, das sich mit der Trennung konvexer Mengen befasst. Es besagt, dass zwei nicht überlappende konvexe Mengen in einem normierten Raum durch eine hyperplane (eine affine Hyperebene) getrennt werden können. Genauer gesagt, wenn CCC und DDD zwei nicht leere konvexe Mengen sind, sodass C∩D=∅C \cap D = \emptysetC∩D=∅, gibt es eine lineare Funktional fff und einen Skalar α\alphaα, so dass:

f(x)≤α∀x∈Cundf(y)≥α∀y∈D.f(x) \leq \alpha \quad \forall x \in C \quad \text{und} \quad f(y) \geq \alpha \quad \forall y \in D.f(x)≤α∀x∈Cundf(y)≥α∀y∈D.

Dies bedeutet, dass die Menge CCC auf einer Seite der Hyperplane und die Menge DDD auf der anderen Seite liegt. Das Theorem ist besonders nützlich in der Optimierung und der Spieltheorie, da es ermöglicht, Probleme geometrisch zu formulieren und Lösungen zu finden, indem die Trennbarkeit von Lösungen und Constraints untersucht wird.

Hessische Matrix

Die Hessische Matrix ist eine quadratische Matrix, die die zweiten Ableitungen einer multivariablen Funktion enthält. Sie ist besonders wichtig in der Optimierung und der Differentialgeometrie, da sie Informationen über die Krümmung der Funktion liefert. Für eine Funktion f:Rn→Rf: \mathbb{R}^n \to \mathbb{R}f:Rn→R ist die Hessische Matrix definiert als:

H(f)=[∂2f∂x12∂2f∂x1∂x2⋯∂2f∂x1∂xn∂2f∂x2∂x1∂2f∂x22⋯∂2f∂x2∂xn⋮⋮⋱⋮∂2f∂xn∂x1∂2f∂xn∂x2⋯∂2f∂xn2]H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix} H(f)=​∂x12​∂2f​∂x2​∂x1​∂2f​⋮∂xn​∂x1​∂2f​​∂x1​∂x2​∂2f​∂x22​∂2f​⋮∂xn​∂x2​∂2f​​⋯⋯⋱⋯​∂x1​∂xn​∂2f​∂x2​∂xn​∂2f​⋮∂xn2​∂2f​​​

Arbitrage-Preistheorie

Die Arbitrage Pricing Theory (APT) ist ein Finanzmodell zur Bewertung von Vermögenswerten, das auf der Annahme basiert, dass der Preis eines Vermögenswerts durch verschiedene systematische Risikofaktoren bestimmt wird. Im Gegensatz zum Capital Asset Pricing Model (CAPM), das nur einen einzelnen Risikofaktor berücksichtigt (Marktrendite), identifiziert die APT mehrere Faktoren, die die Renditen beeinflussen können, wie zum Beispiel Inflation, Zinssätze oder wirtschaftliches Wachstum.

Die APT postuliert, dass, solange Arbitrage möglich ist, die erwartete Rendite eines Vermögenswerts durch die folgende Gleichung beschrieben werden kann:

E(Ri)=Rf+β1⋅(E(R1)−Rf)+β2⋅(E(R2)−Rf)+…+βn⋅(E(Rn)−Rf)E(R_i) = R_f + \beta_1 \cdot (E(R_1) - R_f) + \beta_2 \cdot (E(R_2) - R_f) + \ldots + \beta_n \cdot (E(R_n) - R_f)E(Ri​)=Rf​+β1​⋅(E(R1​)−Rf​)+β2​⋅(E(R2​)−Rf​)+…+βn​⋅(E(Rn​)−Rf​)

Hierbei ist E(Ri)E(R_i)E(Ri​) die erwartete Rendite des Vermögenswerts iii, RfR_fRf​ der risikofreie Zinssatz, und E(Rj)E(R_j)E(Rj​) die erwartete Rendite des j-ten Risikofaktors, gewichtet durch die Sensitivität βj\beta_jβj​ des Vermögenswerts gegenüber diesem Faktor. Die Theorie ist besonders nützlich

Transformers Nlp

Transformers sind eine revolutionäre Architektur im Bereich der natürlichen Sprachverarbeitung (NLP), die erstmals im Paper "Attention is All You Need" von Vaswani et al. (2017) vorgestellt wurde. Sie basieren auf dem Konzept der Selbstaufmerksamkeit, das es dem Modell ermöglicht, in einem Text die Beziehungen zwischen den Wörtern unabhängig von ihrer Position zu verstehen. Im Gegensatz zu früheren Modellen, die sequenziell arbeiteten, können Transformers Informationen parallel verarbeiten, was zu einer erheblichen Effizienzsteigerung führt.

Wichtigste Komponenten der Transformer-Architektur sind der Encoder und der Decoder, die beide aus mehreren Schichten von Selbstaufmerksamkeits- und Feedforward-Netzwerken bestehen. Diese Architektur erlaubt es, kontextuelle Informationen zu erfassen und komplexe Aufgaben wie Übersetzungen, Textgenerierung und Sentiment-Analyse effektiv zu bewältigen. Durch das Training auf großen Datenmengen haben sich Transformer-Modelle wie BERT, GPT und T5 als äußerst leistungsfähig und vielseitig erwiesen, was sie zu einem Grundpfeiler moderner NLP-Anwendungen macht.

Ergodentheorie

Die Ergodische Theorie ist ein Teilgebiet der Mathematik, das sich mit dynamischen Systemen beschäftigt und untersucht, wie sich Systeme über Zeit entwickeln. Sie analysiert die langfristigen Durchschnittswerte von Funktionen, die auf diesen Systemen definiert sind. Ein zentrales Konzept der Ergodischen Theorie ist das Ergodengesetz, das besagt, dass unter bestimmten Bedingungen die zeitlichen Mittelwerte und die räumlichen Mittelwerte einer Funktion gleich sind. Mathematisch formuliert bedeutet dies, dass für ein dynamisches System (X,T)(X, T)(X,T) und eine messbare Funktion fff gilt:

lim⁡n→∞1n∑k=0n−1f(Tk(x))=∫Xf dμ\lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T^k(x)) = \int_X f \, d\mun→∞lim​n1​k=0∑n−1​f(Tk(x))=∫X​fdμ

für fast alle x∈Xx \in Xx∈X, wobei μ\muμ ein Maß auf XXX ist. Diese Theorie findet Anwendung in verschiedenen Bereichen, einschließlich Physik, Statistik und Wirtschaft, da sie hilft, komplexe Systeme zu verstehen und Vorhersagen über deren Verhalten zu treffen.

Ipo-Preisfestsetzung

Das IPO Pricing (Initial Public Offering Pricing) bezieht sich auf den Prozess der Festlegung des Preises, zu dem Aktien eines Unternehmens beim ersten Verkauf an die Öffentlichkeit angeboten werden. Dieser Preis ist entscheidend, da er sowohl die Wahrnehmung des Unternehmens durch Investoren als auch die Kapitalbeschaffung beeinflusst. Bei der Preisfestlegung berücksichtigen Banken und Unternehmen verschiedene Faktoren, darunter Marktanalyse, Nachfrageprognosen und finanzielle Kennzahlen. Ein häufig verwendetes Verfahren ist die Bookbuilding-Methode, bei der Investoren ihre Kaufinteresse und Preisvorstellungen angeben. Letztendlich wird der IPO-Preis so festgelegt, dass er sowohl für das Unternehmen als auch für die Investoren attraktiv ist und eine erfolgreiche Platzierung der Aktien gewährleistet.