StudierendeLehrende

Optical Bandgap

Der optische Bandabstand (Optical Bandgap) ist ein entscheidendes Konzept in der Festkörperphysik und Materialwissenschaft, das die Energie beschreibt, die benötigt wird, um ein Elektron von einem gebundenen Zustand in einem Material in den Leitungszustand zu befördern. Dieser Energieabstand ist besonders wichtig für Halbleiter und Isolatoren, da er die Absorption von Licht und die elektronische Struktur des Materials beeinflusst. Der optische Bandabstand kann durch verschiedene Methoden bestimmt werden, einschließlich spektroskopischer Techniken wie der UV-Vis-Spektroskopie.

In der Regel wird der optische Bandabstand in Elektronenvolt (eV) angegeben und ist ein Indikator für die Lichtabsorptionseigenschaften eines Materials. Materialien mit einem großen optischen Bandabstand absorbieren Licht in höheren Energiebereichen, während Materialien mit einem kleinen Bandabstand auch im sichtbaren Bereich Licht absorbieren können. Die Beziehung zwischen der Absorption α\alphaα und der Photonenergie EEE kann oft durch die Gleichung beschrieben werden:

α∝(E−Eg)n\alpha \propto (E - E_g)^nα∝(E−Eg​)n

wobei EgE_gEg​ der optische Bandabstand und nnn ein Exponent ist, der von der Art des Übergangs abhängt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Maxwellsche Gleichungen

Maxwell's Gleichungen sind vier fundamentale Gleichungen der Elektrodynamik, die das Verhalten von elektrischen und magnetischen Feldern beschreiben. Diese Gleichungen, formuliert von James Clerk Maxwell im 19. Jahrhundert, verknüpfen elektrische Felder E\mathbf{E}E, magnetische Felder B\mathbf{B}B, elektrische Ladungen ρ\rhoρ und Ströme J\mathbf{J}J. Sie lauten:

  1. Gaußsches Gesetz: ∇⋅E=ρε0\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}∇⋅E=ε0​ρ​ - Dies beschreibt, wie elektrische Felder von elektrischen Ladungen erzeugt werden.
  2. Gaußsches Gesetz für Magnetismus: ∇⋅B=0\nabla \cdot \mathbf{B} = 0∇⋅B=0 - Dies besagt, dass es keine magnetischen Monopole gibt und dass magnetische Feldlinien immer geschlossen sind.
  3. Faradaysches Gesetz der Induktion: ∇×E=−∂B∂t\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}∇×E=−∂t∂B​ - Es erklärt, wie sich ein sich änderndes magnetisches Feld in ein elektrisches Feld umwandelt.
  4. Maxwellsches Gesetz der Induktion: $\nabla \times \mathbf{B

Coulomb-Kraft

Die Coulomb-Kraft ist die elektrische Kraft zwischen zwei geladenen Teilchen und wurde nach dem französischen Physiker Charles-Augustin de Coulomb benannt. Diese Kraft kann sowohl anziehend als auch abstoßend wirken, abhängig von den Vorzeichen der Ladungen: gleichnamige Ladungen (z. B. zwei positive oder zwei negative) stoßen sich ab, während ungleichnamige Ladungen (eine positive und eine negative) sich anziehen. Die Stärke der Coulomb-Kraft wird durch das Coulomb-Gesetz beschrieben, das mathematisch wie folgt formuliert ist:

F=k⋅∣q1⋅q2∣r2F = k \cdot \frac{|q_1 \cdot q_2|}{r^2}F=k⋅r2∣q1​⋅q2​∣​

Hierbei ist FFF die Coulomb-Kraft, kkk die Coulomb-Konstante (ungefähr 8.99×109 N m2/C28.99 \times 10^9 \, \text{N m}^2/\text{C}^28.99×109N m2/C2), q1q_1q1​ und q2q_2q2​ die Beträge der beiden Punktladungen, und rrr der Abstand zwischen ihnen. Diese Kraft spielt eine zentrale Rolle in der Elektrodynamik und ist grundlegend für das Verständnis von elektrischen Feldern, Atomen und Molekülen.

Brayton-Zyklus

Der Brayton-Zyklus ist ein thermodynamischer Prozess, der häufig in Gasturbinen und Flugtriebwerken verwendet wird. Er besteht aus vier Hauptschritten: Kompression, Verbrennung, Expansion und Abfuhr. Zunächst wird die Luft in einem Kompressor komprimiert, was zu einem Anstieg des Drucks und der Temperatur führt. Anschließend wird die komprimierte Luft in einer Brennkammer mit Kraftstoff vermischt und verbrannt, wodurch eine große Menge an Energie freigesetzt wird. Diese Energie wird dann genutzt, um eine Turbine anzutreiben, die die Luft expandiert und die Temperatur sowie den Druck wieder absenkt. Der Wirkungsgrad des Brayton-Zyklus kann durch die Verwendung von Mehrstufenkompressoren und Turbinen sowie durch die Implementierung von Regeneratoren zur Abwärmenutzung verbessert werden.

Die Effizienz des Zyklus kann durch die Formel η=1−T1T2\eta = 1 - \frac{T_1}{T_2}η=1−T2​T1​​ beschrieben werden, wobei T1T_1T1​ die Eintrittstemperatur und T2T_2T2​ die Austrittstemperatur der Luft darstellt.

Nanodraht-Synthesetechniken

Die Synthese von Nanodrähten ist ein dynamisches Forschungsfeld, das verschiedene Techniken umfasst, um nanometergroße Drahtstrukturen zu erzeugen. Zu den gängigsten Methoden zählen die Chemische Dampfablagerung (CVD), die Laserablation und die Sol-Gel-Methode. Bei der CVD wird ein Gasgemisch in eine Reaktionskammer eingeführt, wo es sich auf einem Substrat ablagert und Nanodrähte bildet. Die Laserablation nutzt hochenergetische Laserstrahlen, um Material von einer Zieloberfläche zu entfernen und es in der Gasphase zu kondensieren, wodurch Nanodrähte entstehen. In der Sol-Gel-Methode wird eine chemische Lösung verwendet, um Nanodrähte durch kontrollierte chemische Reaktionen zu synthetisieren. Diese Techniken ermöglichen die Erzeugung von Nanodrähten mit spezifischen elektrischen, optischen und mechanischen Eigenschaften, die in verschiedenen Anwendungen wie Elektronik, Sensorik und Photonik von Bedeutung sind.

Dunkle Energie Zustandsgleichung

Die Dark Energy Equation Of State (EoS) beschreibt das Verhalten der Dunklen Energie im Universum und wird häufig durch das Verhältnis von Druck ppp zu Dichte ρ\rhoρ ausgedrückt. Diese Beziehung wird häufig in der Form w=pρw = \frac{p}{\rho}w=ρp​ dargestellt, wobei www den Zustand der Dunklen Energie charakterisiert. Ein Wert von w=−1w = -1w=−1 entspricht der kosmologischen Konstante und deutet darauf hin, dass die Dunkle Energie konstant bleibt, während das Universum sich ausdehnt. Werte von www zwischen -1 und 0 könnten auf eine dynamische Form der Dunklen Energie hinweisen, die sich im Laufe der Zeit verändert. Die Untersuchung der Dunklen Energie und ihrer EoS ist entscheidend, um das Verständnis der beschleunigten Expansion des Universums zu vertiefen und die grundlegenden physikalischen Gesetze zu überprüfen, die unser kosmologisches Modell prägen.

Anisotrope Leitfähigkeit

Anisotrope Leitfähigkeit bezeichnet die Eigenschaft von Materialien, bei der die elektrische oder thermische Leitfähigkeit in verschiedene Richtungen unterschiedlich ist. Dies bedeutet, dass das Material in einer Richtung besser leitet als in einer anderen. Ein klassisches Beispiel sind Kristalle, die oft eine anisotrope Struktur aufweisen, was zu variierenden Leitfähigkeitswerten führt, abhängig von der Richtung des angelegten Feldes. In mathematischer Form kann die anisotrope Leitfähigkeit durch einen Tensor dargestellt werden, der in der Regel als σ\sigmaσ bezeichnet wird und die Beziehungen zwischen elektrischer Feldstärke E\mathbf{E}E und Stromdichte J\mathbf{J}J beschreibt:

J=σ⋅E\mathbf{J} = \sigma \cdot \mathbf{E}J=σ⋅E

Hierbei ist σ\sigmaσ ein Matrix-ähnlicher Tensor, der die verschiedenen Leitfähigkeiten in den verschiedenen Richtungen beschreibt. Die Untersuchung der anisotropen Leitfähigkeit ist besonders wichtig in der Materialwissenschaft, der Halbleitertechnik und der Geophysik, da sie entscheidende Informationen über die strukturellen Eigenschaften und das Verhalten von Materialien unter verschiedenen Bedingungen liefert.